Covalent organic polymer nanosheets (COPNs) endowed with porous networks and large surface areas in their structures offer great advantages over other materials in addressing environmental problems. In this study, fluorine-free superhydrophobic COPNs were designed and applied to selective dye absorption. Notably, COPNs selectively adsorb dyes with a high hydrophobic index (HI) and reject low HI dyes with maximum adsorption capacities of 361 and 263 mg/g for crystal violet and methylene blue, respectively. The adsorption isotherm model showed that the COPNs follow the Langmuir adsorption isotherm model and pseudo-second-order kinetics. Next, we explored the superhydrophobicity of the COPNs by in situ fabrication with melamine sponge (COPNs-MS), which incorporates the superhydrophobicity of COPNs [water contact angle (WCA) of >150°] with the structure and flexibility of the MS skeleton. The COPNs-MS shows various oil-adsorbing properties with good adsorption capacity (from 60 to 120 g/g) and also effectively separates various surfactant-stabilized emulsions with a separation efficiency of over 99%. The as-fabricated COPNs-MS retains its superhydrophobicity in various solvents and hazardous conditions (WCA ≥ 150°) and exhibits good flame retardancy and excellent compression properties with excellent antifouling property due to the superhydrophobic COPN coating. Furthermore, COPNs-MS also demonstrates excellent recyclability because the strong COPN coating in the MS skeleton retains its hydrophobicity. Therefore, our fluorine-free superhydrophobic COPNs are not only capable of selective dye adsorption but also exhibit very good oil adsorption and surfactant-stabilized emulsion separation performance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.1c03492DOI Listing

Publication Analysis

Top Keywords

fluorine-free superhydrophobic
12
selective dye
12
emulsion separation
8
superhydrophobic copns
8
adsorption isotherm
8
isotherm model
8
superhydrophobicity copns
8
copn coating
8
copns
7
adsorption
6

Similar Publications

The development of superhydrophobic, waterproof, and breathable membranes, as well as icephobic surfaces, has attracted growing interest. Fluorinated polymers like PTFE or PVDF are highly effective, and previous research by the authors has shown that combining these polymers with electrospinning-induced roughness enhances their hydro- and ice-phobicity. The infusion of these electrospun mats with lubricant oil further improves their icephobic properties, achieving a slippery liquid-infused porous surface (SLIPS).

View Article and Find Full Text PDF

Scalable Preparation of Superdurable, Self-Healing, and Biocompatible Superhydrophobic Poly(ethylene terephthalate) Fabrics.

ACS Appl Mater Interfaces

December 2024

CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.

The chemical inertness of poly(ethylene terephthalate) (PET) fabrics poses challenges in achieving superhydrophobic coatings with durable adhesion on their surfaces. Conventional surface modification methods such as alkali etching and plasma etching typically compromise the favorable mechanical properties of PET. In this study, polydopamine (PDA) was utilized to functionalize the PET fabric nondestructively by creating robust and reactive hydroxyl and amine groups on its surface, which were subsequently used as a binder of superhydrophobic modifiers such as fluorine-free octadecyltrichlorosilane (OTS).

View Article and Find Full Text PDF
Article Synopsis
  • * These surfaces offer benefits like self-cleaning and resistance to bacterial adhesion, but have challenges like low durability, transparency issues, and environmental concerns in production.
  • * The review highlights the current limitations of these technologies and presents emerging strategies for improvement, focusing on their effectiveness for building heritage conservation and future applications.
View Article and Find Full Text PDF

Fluorine-free, superhydrophobic self-healing and UV-blocking cotton fabric for oil/water separation.

Int J Biol Macromol

December 2024

School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China; State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China. Electronic address:

The discharge of oily wastewater not only pollutes waters but also deteriorates our living environment. Superhydrophobic cotton fabric is considered as an important remedy material for oily wastewater cleanup due to outstanding advantages including low cost, high porosity and switchable wettability. However, the existing superhydrophobic fabrics cannot exhibit durable superhydrophobicity during real-life applications due to poor interaction between the coatings and fabric substrates.

View Article and Find Full Text PDF

Flexible wearable sensors can mimic the sensing ability of the skin and transform deformation stimuli into monitorable electrical signals, making them favorable in the fields of personalized healthcare, human motion monitoring, and remote monitoring systems. Here, an innovative piezoresistive physical sensor based on fluorine-free superhydrophobic dodecyltrimethoxysilane/polypyrrole/carbon nanotube (DTMS/PPy/CNT) cotton fabrics (DPC-CFs) was assembled an environmentally safe and simple dip-coating method. The flexible wearable sensor exhibits self-cleaning capability (high water contact angle of 158.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!