Sensorimotor synchronization (SMS), the coordination of physical actions in time with a rhythmic sequence, is a skill that is necessary not only for keeping the beat when making music, but in a wide variety of interpersonal contexts. Being able to attend to temporal regularities in the environment is a prerequisite for event prediction, which lies at the heart of many cognitive and social operations. It is therefore of value to assess and potentially stimulate SMS abilities, particularly in aging and neurocognitive disorders (NCDs), to understand intra-individual communication in the later stages of life, and to devise effective music-based interventions. While a bulk of research exists about SMS and movement-based interventions in Parkinson's disease, a lot less is known about other types of neurodegenerative disorders, such as Alzheimer's disease, vascular dementia, or frontotemporal dementia. In this review, we outline the brain and cognitive mechanisms involved in SMS with auditory stimuli, and how they might be subject to change in healthy and pathological aging. Globally, SMS with isochronous sounds is a relatively well-preserved skill in old adulthood and in patients with NCDs. At the same time, natural tapping speed decreases with age. Furthermore, especially when synchronizing to sequences at slow tempi, regularity and precision might be lower in older adults, and even more so in people with NCDs, presumably due to the fact that this process relies on attention and working memory resources that depend on the prefrontal cortex and parietal areas. Finally, we point out that the effect of the severity and etiology of NCDs on sensorimotor abilities is still unclear: More research is needed with moderate and severe NCD, comparing different etiologies, and using complex auditory signals, such as music.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8970308 | PMC |
http://dx.doi.org/10.3389/fpsyg.2022.838511 | DOI Listing |
Heliyon
December 2024
Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia.
Mental imagery is a crucial cognitive process, yet its underlying neural mechanisms remain less understood compared to perception. Furthermore, within the realm of mental imagery, the somatosensory domain is particularly underexplored compared to other sensory modalities. This study aims to investigate the influence of tactile imagery (TI) on cortical somatosensory processing.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA.
Transcranial magnetic stimulation (TMS) applied to the motor cortex has revolutionized the study of motor physiology in humans. Despite this, TMS-evoked electrophysiological responses show significant variability, due in part to inconsistencies between TMS pulse timing and ongoing brain oscillations. Variable responses to TMS limit mechanistic insights and clinical efficacy, necessitating the development of methods to precisely coordinate the timing of TMS pulses to the phase of relevant oscillatory activity.
View Article and Find Full Text PDFBrain Sci
October 2024
Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy.
Background/objectives: Driving abilities require the synchronized activity of cerebral networks associated with sensorimotor integration, motricity, and executive functions. Drivers with Parkinson's disease (DwP) have impaired driving ability, but little is known about the impact of "wearing-off" and therapies in addition to L-DOPA on driving capacities. This study aimed to (i) compare driving performance between DwP during different motor states and healthy controls and (ii) assess the impact of add-on therapies on driving abilities.
View Article and Find Full Text PDFBrain Sci
October 2024
Music and Health Science Research Collaboratory, University of Toronto, Toronto, ON M5S 1C5, Canada.
Background: Humans exhibit a remarkable ability to synchronize their actions with external auditory stimuli through a process called auditory-motor or rhythmic entrainment. Positive effects of rhythmic entrainment have been demonstrated in adults with neurological movement disorders, yet the neural substrates supporting the transformation of auditory input into timed rhythmic motor outputs are not fully understood. We aimed to systematically map and synthesize the research on the neural correlates of auditory-motor entrainment and synchronization.
View Article and Find Full Text PDFTher Adv Chronic Dis
November 2024
Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan.
Background: Severe upper extremity paresis due to stroke is a significant clinical sequela. Neuromuscular electrical stimulation (NMES)-based rehabilitation has demonstrated promising results along with cortical plasticity. Transcranial alternating current stimulation (tACS) has gained attention due to its unique ability to entrain endogenous oscillatory brain rhythms with injected AC frequency, offering the potential for modifying brain conditions to enhance rehabilitative interventions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!