Early detection of autism spectrum disorder (ASD) is highly beneficial to the health sustainability of children. Existing detection methods depend on the assessment of experts, which are subjective and costly. In this study, we proposed a machine learning approach that fuses physiological data (electroencephalography, EEG) and behavioral data (eye fixation and facial expression) to detect children with ASD. Its implementation can improve detection efficiency and reduce costs. First, we used an innovative approach to extract features of eye fixation, facial expression, and EEG data. Then, a hybrid fusion approach based on a weighted naive Bayes algorithm was presented for multimodal data fusion with a classification accuracy of 87.50%. Results suggest that the machine learning classification approach in this study is effective for the early detection of ASD. Confusion matrices and graphs demonstrate that eye fixation, facial expression, and EEG have different discriminative powers for the detection of ASD and typically developing children, and EEG may be the most discriminative information. The physiological and behavioral data have important complementary characteristics. Thus, the machine learning approach proposed in this study, which combines the complementary information, can significantly improve classification accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8975630 | PMC |
http://dx.doi.org/10.1155/2022/9340027 | DOI Listing |
Biomed Phys Eng Express
January 2025
Electronics and Communication Engineering, Rajiv Gandhi University, Rono Hills, Doimukh, ITANAGAR, Itanagar, Arunachal Pradesh, 791112, INDIA.
Accurate detection of cardiac arrhythmias is crucial for preventing premature deaths. The current study employs a dual-stage Discrete Wavelet Transform (DWT) and a median filter to eliminate noise from ECG signals. Subsequently, ECG signals are segmented, and QRS regions are extracted for further preprocessing.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/IT de Culiacán, Culiacán, Sinaloa, México.
Eutrophication is one of the most relevant concerns due to the risk to water supply and food security. Nitrogen and phosphorus chemical species concentrations determined the risk and magnitude of eutrophication. These analyses are even more relevant in basins with intensive agriculture due to agrochemical discharges.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
Machine learning interatomic potentials (MLIPs) promise quantum-level accuracy at classical force field speeds, but their performance hinges on the quality and diversity of training data. An efficient and fully automated approach to sample chemical reaction space without relying on human intuition, addressing a critical gap in MLIP development is presented. The method combines the speed of tight-binding calculations with selective high-level refinement, generating diverse datasets that capture both equilibrium and reactive regions of potential energy surfaces.
View Article and Find Full Text PDFPLoS One
January 2025
School of Resources and Environment, Inner Mongolia University of Technology, Hohhot, China.
The aim of this study is to address the limitations of convolutional networks in recognizing modulation patterns. These networks are unable to utilize temporal information effectively for feature extraction and modulation pattern recognition, resulting in inefficient modulation pattern recognition. To address this issue, a signal modulation recognition method based on a two-way interactive temporal attention network algorithm has been developed.
View Article and Find Full Text PDFPLoS One
January 2025
Woodwell Climate Research Center, Falmouth, MA, United States of America.
Soil spectroscopy is a widely used method for estimating soil properties that are important to environmental and agricultural monitoring. However, a bottleneck to its more widespread adoption is the need for establishing large reference datasets for training machine learning (ML) models, which are called soil spectral libraries (SSLs). Similarly, the prediction capacity of new samples is also subject to the number and diversity of soil types and conditions represented in the SSLs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!