The COVID-19 epidemic in Brazil experienced two major lineage replacements until mid-2021. The first was driven by lineage P.2, in late 2020, and the second by lineage Gamma, in early 2021. To understand how these SARS-CoV-2 lineages spread in Brazil, we analyzed 11,724 genomes collected throughout the country between September 2020 and April 2021. Our findings indicate that lineage P.2 probably emerged in July 2020 in the Rio de Janeiro state and Gamma in November 2020 in the Amazonas state. Both states were the main hubs of viral disseminations to other Brazilian locations. We estimate that Gamma was 1.56-3.06 times more transmissible than P.2 in Rio de Janeiro and that the median effective reproductive number (Re) of Gamma varied according to the geographic context (Re = 1.59-3.55). In summary, our findings support that lineage Gamma was more transmissible and spread faster than P.2 in Brazil.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8957357 | PMC |
http://dx.doi.org/10.1016/j.isci.2022.104156 | DOI Listing |
Euro Surveill
January 2025
National Reference Center for Respiratory Viruses, Hospices Civils de Lyon, CIRI, INSERM U1111, University Claude Bernard Lyon 1, Lyon, France.
BackgroundEarly detection and characterisation of SARS-CoV-2 variants have been and continue to be essential for assessing their public health impact. In August 2023, Santé publique France implemented enhanced surveillance for BA.2.
View Article and Find Full Text PDFSci Rep
January 2025
Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
The ongoing emergence of SARS-CoV-2 variants, combined with antigen exposures from different waves and vaccinations, poses challenges in updating COVID-19 vaccine antigens. We collected 206 sera from individuals with vaccination-only, hybrid immunity, and single or repeated omicron post-vaccination infections (PVIs), including non-JN.1 and JN.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Astronomy, University of California, Riverside, Riverside, CA, USA.
New and more transmissible variants of SARS-CoV-2 have arisen multiple times over the course of the pandemic. Rapidly identifying mutations that affect transmission could improve our understanding of viral biology and highlight new variants that warrant further study. Here we develop a generic, analytical epidemiological model to infer the transmission effects of mutations from genomic surveillance data.
View Article and Find Full Text PDFNat Commun
January 2025
School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China.
East, South, and Southeast Asia (together referred to as Southeastern Asia hereafter) have been recognized as critical areas fuelling the global circulation of seasonal influenza. However, the seasonal influenza migration network within Southeastern Asia remains unclear, including how pandemic-related disruptions altered this network. We leveraged genetic, epidemiological, and airline travel data between 2007-2023 to characterise the dispersal patterns of influenza A/H3N2 and B/Victoria viruses both out of and within Southeastern Asia, including during perturbations by the 2009 A/H1N1 and COVID-19 pandemics.
View Article and Find Full Text PDFViruses
December 2024
Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina.
Understanding the evolutionary patterns and geographic spread of SARS-CoV-2 variants, particularly Omicron, is essential for effective public health responses. This study focused on the genomic analysis of the Omicron variant in Cordoba, Argentina from 2021 to 2022. Phylogenetic analysis revealed the dominant presence of BA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!