Tremor is a common symptom in multiple sclerosis and can present as a severe postural and action tremor, leading to significant disability. Owing to the diffuse and progressive nature of the disease, it has been challenging to characterize the pathophysiology underlying multiple sclerosis tremor. Deep brain stimulation of the ventralis intermedius and the ventralis oralis posterior thalamic nuclei has been used to treat medically refractory multiple sclerosis tremors with variable results. The aim of this study was to characterize multiple sclerosis tremor at the network level by applying modern connectomic techniques to data from a previously completed single-centre, randomized, single-blind prospective trial of 12 subjects who were treated with unilateral dual-lead (ventralis intermedius + ventralis oralis posterior) thalamic deep brain stimulation. Preoperative T-weighted MRI and postoperative head CTs were used, along with applied programming settings, to estimate the volume of tissue activated for each patient. The volumes of tissue activated were then used to make voxel-wise and structural connectivity correlations with clinically observed tremor suppression. The volume of the tissue-activated analyses identified the optimal region of stimulation at the ventralis oralis posterior ventralis intermedius border intersecting with the dentato-rubro-thalamic tract. A regression model showed strong connectivity to the supplemental motor area was positively associated with tremor suppression ( = 0.66) in this cohort, whereas connectivity to the primary motor cortex was negatively associated with tremor suppression ( = -0.69), a finding opposite to that seen in ventralis intermedius deep brain stimulation for essential tremor. Comparing the structural connectivity to that of an essential tremor cohort revealed a distinct network that lies anterior to the essential tremor network. Overall, the volumes of tissue activated and connectivity observations converge to suggest that optimal suppression of multiple sclerosis tremor will likely be achieved by directing stimulation more anteriorly toward the ventralis oralis posterior and that a wide field of stimulation synergistically modulating the ventralis oralis posterior and ventralis intermedius nuclei may be more effective than traditional ventralis intermedius deep brain stimulation at suppressing the severe tremors commonly seen in complex tremor syndromes such as multiple sclerosis tremor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8971897 | PMC |
http://dx.doi.org/10.1093/braincomms/fcac063 | DOI Listing |
PLoS One
January 2025
Department of Epidemiology, Epidemiology Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.
Background: Multiple sclerosis (MS) onset is caused by genetic and environmental factors. Vitamin D has been identified as contributing environmental risk factor, with higher prevalence at latitudes further from the equator. Mongolia, at 45°N, has limited sunlight exposure, increasing the population's risk for vitamin D deficiency.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran.
Background: Multiple sclerosis (MS) is an autoimmune disorder affecting the central nervous system, with varying clinical manifestations such as optic neuritis, sensory disturbances, and brainstem syndromes. Disease progression is monitored through methods like MRI scans, disability scales, and optical coherence tomography (OCT), which can detect retinal thinning, even in the absence of optic neuritis. MS progression involves neurodegeneration, particularly trans-synaptic degeneration, which extends beyond the initial injury site.
View Article and Find Full Text PDFActa Parasitol
January 2025
Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, P.O. Box: 9453155166, Bojnurd, Iran.
Pourpose: This study aimed to investigate the seroepidemiological status of Toxoplasma gondii (T. gondii) infection in Multiple Sclerosis (MS) patients compared to controls.
Methods: The present study included 98 MS patients and 100 controls.
Toxins (Basel)
January 2025
Unité des Toxines Bactériennes, Institut Pasteur, Université Paris Cité, CNRS UMR 2001 INSERM U1306, 75015 Paris, France.
Multiple sclerosis (MS) is a chronic immune-mediated neurological disorder, characterized by progressive demyelination and neuronal cell loss in the central nervous system. Many possible causes of MS have been proposed, including genetic factors, environmental triggers, and infectious agents. Recently, epsilon toxin (ETX) has been incriminated in MS, based initially on the isolation of the bacteria from a MS patient, combined with an immunoreactivity to ETX.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
School of Mechanical Engineering, School of Basic Science, Yeungnam University, Gyeongsan 38541, Republic of Korea.
Autoimmune diseases present complex therapeutic challenges due to their chronic nature, systemic impact, and requirement for precise immunomodulation to avoid adverse side effects. Recent advancements in biodegradable and stimuli-responsive nanomaterials have opened new avenues for targeted drug delivery systems capable of addressing these challenges. This review provides a comprehensive analysis of state-of-the-art biodegradable nanocarriers such as polymeric nanoparticles, liposomes, and hydrogels engineered for targeted delivery in autoimmune therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!