The complexity derived from resting-state functional magnetic resonance imaging (rs-fMRI) data has been applied for exploring cognitive states and occupational neuroplasticity. However, there is little information about the influence of occupational factors on dynamic complexity and topological properties of the connectivity networks. In this paper, we proposed a novel dynamical brain complexity analysis (DBCA) framework to explore the changes in dynamical complexity of brain activity at the voxel level and complexity topology for professional seafarers caused by long-term working experience. The proposed DBCA is made up of dynamical brain entropy mapping analysis and complex network analysis based on brain entropy sequences, which generate the dynamical complexity of local brain areas and the topological complexity across brain areas, respectively. First, the transient complexity of voxel-wise brain map was calculated; compared with non-seafarers, seafarers showed decreased dynamic entropy values in the cerebellum and increased values in the left fusiform gyrus (BA20). Further, the complex network analysis based on brain entropy sequences revealed small-worldness in terms of topological complexity in both seafarers and non-seafarers, indicating that it is an inherent attribute of human the brain. In addition, seafarers showed a higher average path length and lower average clustering coefficient than non-seafarers, suggesting that the information processing ability is reduced in seafarers. Moreover, the reduction in efficiency of seafarers suggests that they have a less efficient processing network. To sum up, the proposed DBCA is effective for exploring the dynamic complexity changes in voxel-wise activity and region-wise connectivity, showing that occupational experience can reshape seafarers' dynamic brain complexity fingerprints.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8973415 | PMC |
http://dx.doi.org/10.3389/fnins.2022.830808 | DOI Listing |
Photosynth Res
January 2025
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia, 119991.
The femtosecond dynamics of energy transfer from light-excited spirilloxanthin (Spx) to bacteriochlorophyll (BChl) a in the reaction centers (RCs) of purple photosynthetic bacteria Rhodospirillum rubrum was studied. According to crio-electron microscopy data, Spx is located near accessory BChl a in the B-branch of cofactors. Spx was excited by 25 fs laser pulses at 490 nm, and difference absorption spectra were recorded in the range 500-700 nm.
View Article and Find Full Text PDFNat Methods
January 2025
Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
The phenotypic and functional states of cells are modulated by a complex interactive molecular hierarchy of multiple omics layers, involving the genome, epigenome, transcriptome, proteome and metabolome. Spatial omics approaches have enabled the study of these layers in tissue context but are often limited to one or two modalities, offering an incomplete view of cellular identity. Here we present spatial-Mux-seq, a multimodal spatial technology that allows simultaneous profiling of five different modalities: two histone modifications, chromatin accessibility, whole transcriptome and a panel of proteins at tissue scale and cellular level in a spatially resolved manner.
View Article and Find Full Text PDFAir conditioning systems are widely used to provide thermal comfort in hot and humid regions, but they also consume a large amount of energy. Therefore, accurate and reliable load demand forecasting is essential for energy management and optimization in air conditioning systems. Within the current paper, a novel model on the basis of machine learning has been presented for dynamic optimal load demand forecasting in air conditioning systems.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Artificial Intelligence and Data Science, College of Computer Science and Engineering, University of Hail, Hail, Saudi Arabia.
In the present digital scenario, the explosion of Internet of Things (IoT) devices makes massive volumes of high-dimensional data, presenting significant data and privacy security challenges. As IoT networks enlarge, certifying sensitive data privacy while still employing data analytics authority is vital. In the period of big data, statistical learning has seen fast progressions in methodological practical and innovation applications.
View Article and Find Full Text PDFSci Rep
January 2025
Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang, 110168, Liaoning, China.
The problem of ground-level ozone (O) pollution has become a global environmental challenge with far-reaching impacts on public health and ecosystems. Effective control of ozone pollution still faces complex challenges from factors such as complex precursor interactions, variable meteorological conditions and atmospheric chemical processes. To address this problem, a convolutional neural network (CNN) model combining the improved particle swarm optimization (IPSO) algorithm and SHAP analysis, called SHAP-IPSO-CNN, is developed in this study, aiming to reveal the key factors affecting ground-level ozone pollution and their interaction mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!