Alzheimer's disease is linked to increased levels of amyloid beta (Aβ) in the brain, but the mechanisms underlying neuronal dysfunction and neurodegeneration remain enigmatic. Here, we investigate whether organizational characteristics of functional presynaptic vesicle pools, key determinants of information transmission in the central nervous system, are targets for elevated Aβ. Using an optical readout method in cultured hippocampal neurons, we show that acute Aβ42 treatment significantly enlarges the fraction of functional vesicles at individual terminals. We observe the same effect in a chronically elevated Aβ transgenic model (APPSw,Ind) using an ultrastructure-function approach that provides detailed information on nanoscale vesicle pool positioning. Strikingly, elevated Aβ is correlated with excessive accumulation of recycled vesicles near putative endocytic sites, which is consistent with deficits in vesicle retrieval pathways. Using the glutamate reporter, iGluSnFR, we show that there are parallel functional consequences, where ongoing information signaling capacity is constrained. Treatment with levetiracetam, an antiepileptic that dampens synaptic hyperactivity, partially rescues these transmission defects. Our findings implicate organizational and dynamic features of functional vesicle pools as targets in Aβ-driven synaptic impairment, suggesting that interventions to relieve the overloading of vesicle retrieval pathways might have promising therapeutic value.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9930632PMC
http://dx.doi.org/10.1093/cercor/bhac134DOI Listing

Publication Analysis

Top Keywords

vesicle pools
12
elevated aβ
12
amyloid beta
8
hippocampal neurons
8
vesicle retrieval
8
retrieval pathways
8
vesicle
6
elevated
4
elevated amyloid
4
beta disrupts
4

Similar Publications

Aureobasidium melanogenum is a black yeast-like fungus that occurs frequently both in nature and in domestic environments. It is becoming increasingly important as an opportunistic pathogen. Nevertheless, its effect on human cells has not yet been studied.

View Article and Find Full Text PDF

The dysfunction of dopaminergic (DA) neurons is central to Parkinson's disease. Distinct synaptic vesicle (SV) populations, differing in neurotransmitter content (dopamine vs. glutamate), may vary due to differences in trafficking and exocytosis.

View Article and Find Full Text PDF

Our objective is to determine the protein and complements constituents of Cord blood Platelet-rich plasma (CB-PRP), based on the hypothesis that it contains beneficial components capable of arresting or potentially decelerating the advancement of atrophic age-related macular degeneration (dry-AMD), with the support of radiomics. Two distinct pools of CB-PRP were assessed, each pool obtained from a total of 15 umbilical cord-blood donors. One aliquot of each pool respectively was subjected to proteomic analysis in order to enhance the significance of our findings, by identifying proteins that are shared between the two sample pools and gaining insights into the pathways they are associated with.

View Article and Find Full Text PDF

The objective of the present study was to determine the variability of platelet lysate-derived extracellular vesicles (pEV), in terms of characteristics and functionality through wound healing assays, when isolated either from platelet concentrates (PC, obtained from 5 donors) or from multiple PC (MPC, that is 50 donors). pEV were isolated under GMP-like conditions in a clean room using Size Exclusion Chromatography (SEC). The differential characteristics between pEV obtained from PC (PC-EV) or MPC (MPC-EV) were evaluated by means of protein concentration, Nanoparticle Tracking Analysis (NTA), Transmission Electron Microscopy (TEM), and flow cytometry using the MACSPlex™ arrays for surface analysis profiling of EV.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines how synaptic changes in neuronal circuits may underlie memory storage, focusing on the structural evidence for synaptic engrams at the hippocampal mossy fiber synapse.
  • - Researchers used a combination of chemical potentiation, functional recordings, and advanced microscopy techniques to assess the effects of forskolin on synaptic transmission and structure.
  • - Findings revealed that forskolin increased both the number of readily releasable vesicles and their proximity to priming proteins, suggesting that structural reorganization at synaptic sites could correlate with learning and memory processes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!