Spinach is a highly perishable product that degrades over time, including due to bacteria contaminating the product prior to packaging, yet the dynamics of bacterial spoilage and factors that affect it are not well understood. Notably, while China is the top producer of spinach globally, there is limited available microbiological data in the literature for spinach supply chains in China. The overall goal of this foundational study was to establish a baseline understanding of bacterial population dynamics on spinach from harvest to 10 days postprocessing for a Chinese supply chain that includes distribution via traditional grocery (a local physical store) and eCommerce (an online store). To this end, organic spinach samples were collected at different stages in a Chinese supply chain by following the same 3 lots, starting at point-of-harvest through processing and distribution via a local grocery store and eCommerce. After distribution, the same 3 lots were stored at 4 °C with microbiological testing performed on multiple days up to day 10 postprocessing, simulating storage at the point-of-consumer. Results showed aerobic plate counts and total Gram-negative counts did not significantly differ across stages in the supply chain from harvest through processing. However, packaged spinach from the same processing facility and lots, exhibited different patterns in bacterial levels across 0 to 10 days postprocessing, depending on whether it was distributed via the local grocery store or eCommerce. Evaluation of bacterial populations performed on a subset of the packaged spinach samples indicated Gram-negative bacteria, in particular Pseudomonas, were predominant across all days of testing (days 0, 3, and 10 postprocessing), with populations differing at the genus level by day. Overall, this study improves our understanding of the dynamics of bacterial populations on spinach and provides baseline data needed for future studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijfoodmicro.2022.109639 | DOI Listing |
Scand J Gastroenterol
January 2025
Norwegian PSC Research Centre, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.
Objectives: Indications of mitochondrial dysfunction are commonly seen in liver diseases, but data are scarce in primary sclerosing cholangitis (PSC). Analyzing circulating and liver-resident molecules indirectly reflecting mitochondrial dysfunction, we aimed to comprehensively characterize this deficit in PSC, and whether this was PSC specific or associated with cholestasis.
Materials And Methods: We retrospectively included plasma from 191 non-transplant patients with large-duct PSC and 100 healthy controls and explanted liver tissue extracts from 24 PSC patients and 18 non-cholestatic liver disease controls.
Fungal highly reducing polyketide synthases (hrPKSs) are remarkable multidomain enzymes that catalyse the biosynthesis of a diverse range of structurally complex compounds. During biosynthesis, the ketosynthase (KS) and acyltransferase (AT) domains of the condensing region are visited by the acyl carrier protein (ACP) domain during every cycle, catalysing chain priming and elongation reactions. Despite their significance, our comprehension of how these steps contribute to biosynthetic fidelity remains poorly understood.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Medicine, University of Florida (UF) Health Cancer Center, University of Florida, Gainesville, FL, United States.
Mitochondria are essential double-membrane organelles with intricate structures and diverse functions within cells. Under normal physiological conditions, mitochondria regulate cellular metabolism and maintain energy homeostasis via the electron transport chain, mediate stem cell fate, and modulate reactive oxygen species production, playing a pivotal role in energy supply and lifespan extension. However, mitochondrial dysfunction can lead to various pathological changes, including cellular aging, necrosis, dysregulated tumor immunity, and the initiation and progression of cancer.
View Article and Find Full Text PDFBr J Haematol
January 2025
St. Michael's Hospital, Li Ka Shing Knowledge Institute, University of Toronto, Toronto, Ontario, Canada.
Approximately 1.92 billion people worldwide are anaemic, and iron deficiency is the most common cause. Iron deficiency anaemia (IDA) disproportionately affects women of reproductive age and remains under-addressed in low- to middle-income countries (LMICs).
View Article and Find Full Text PDFJ Food Prot
January 2025
Department of Food Science, The Pennsylvania State University, University Park, PA 16802. Electronic address:
S. enterica isolates (n = 78) obtained from the vegetable supply chain (farms, distribution centers, markets) in two Cambodian provinces (Siem Reap, Battambang) were sequenced and analyzed. In silico identification of serotypes and detection of antimicrobial resistance genes was performed using SISTR and ABRicate, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!