Background: Analyzing the complex gait patterns of post-stroke patients with lower limb paralysis is essential for rehabilitation.

Research Question: Is it feasible to use the full joint-level kinematic features extracted from the motion capture data of patients directly to identify the optimal gait types that ensure high classification performance?

Methods: In this study, kinematic features were extracted from 111 gait cycle data on joint angles, and angular velocities of 36 post-stroke patients were collected eight times over six months using a motion capture system. Simultaneous clustering and classification were applied to determine the optimal gait types for reliable classification performance.

Results: In the given dataset, six optimal gait groups were identified, and the clustering and classification performances were denoted by a silhouette coefficient of 0.1447 and F score of 1.0000, respectively.

Significance: There is no distinct clinical classification of post-stroke hemiplegic gaits. However, in contrast to previous studies, more optimal gait types with a high classification performance fully utilizing the kinematic features were identified in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gaitpost.2022.03.007DOI Listing

Publication Analysis

Top Keywords

optimal gait
16
post-stroke patients
12
motion capture
12
kinematic features
12
gait types
12
capture data
8
features extracted
8
high classification
8
clustering classification
8
gait
6

Similar Publications

Sarcopenia, an age-related decline in skeletal muscle mass, strength, and function, is increasingly recognized as a significant condition in the aging population, particularly among those with cardiovascular diseases (CVD). This review provides a comprehensive synthesis of the interplay between sarcopenia and cardiogeriatrics, emphasizing shared mechanisms such as chronic low-grade inflammation (inflammaging), hormonal dysregulation, oxidative stress, and physical inactivity. Despite advancements in diagnostic frameworks, such as the EWGSOP2 and AWGS definitions, variability in criteria and assessment methods continues to challenge standardization.

View Article and Find Full Text PDF

Introduction: Gait analysis is a vital tool in the assessment of human movement and has been widely used in clinical settings to identify potential abnormalities in individuals. However, there is a lack of consensus on the normative values for gait metrics in large populations. The primary objective of this study is to establish a normative database of spatiotemporal gait metrics across various age groups, contributing to a broader understanding of human gait dynamics.

View Article and Find Full Text PDF

A Comprehensive Review of Vision-Based Sensor Systems for Human Gait Analysis.

Sensors (Basel)

January 2025

Centre for Automation and Robotics (CAR UPM-CSIC), Escuela Técnica Superior de Ingeniería y Diseño Industrial (ETSIDI), Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain.

Analysis of the human gait represents a fundamental area of investigation within the broader domains of biomechanics, clinical research, and numerous other interdisciplinary fields. The progression of visual sensor technology and machine learning algorithms has enabled substantial developments in the creation of human gait analysis systems. This paper presents a comprehensive review of the advancements and recent findings in the field of vision-based human gait analysis systems over the past five years, with a special emphasis on the role of vision sensors, machine learning algorithms, and technological innovations.

View Article and Find Full Text PDF

Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article proposes a new method to identify the optimal placements of the IMUs and quantify the smoothness of the gait. First, it identifies gait events: foot-strike (FS) and foot-off (FO).

View Article and Find Full Text PDF

The evidence showed that the risk of falls was higher in women, and yoga was considered an effective rehabilitation method for preventing falls. However, there had been no previous attempts to synthesize the evidence specifically for the use of yoga in preventing falls among older women. : This systematic review aimed to strengthen the existing body of evidence by focusing exclusively on the impact of yoga in improving fall-related physical functions among older women.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!