Hip joint mechanics in patients with osteonecrosis of the femoral head following treatment by advanced core decompression.

Clin Biomech (Bristol)

Department of Orthopaedic Surgery, University of Saarland, Kirrberger Straße, D-66421 Homburg, Germany.

Published: April 2022

Background: Osteonecrosis of the femoral head is a serious disease which, if left untreated, leads to destruction of the affected hip joint. For treatment of early stages of this disease, core decompression is the most common procedure. This study investigated the influence of the necrotic lesion and core decompression on the stress pattern in the hip joint using finite element analysis.

Methods: Subject-specific models were generated from CT scan data of 5 intact hips. For each intact hip, twelve affected hip models were created by imposing a necrotic lesion in the femoral head, and four treated models were then created from four affected ones with central lesion, respectively. Treated models were created by supposing that the defect zone and the drill canal were filled with a bone substitute. Totally 105 hip models from three groups (intact, affected and treated) were simulated during normal walking activity.

Findings: Necrotic lesion modified the stress distribution within the femoral head. Peak stress increased significantly up to 186% in mean in hips with a large lesion indicating an increased risk of femoral head collapse. Additionally, the presence of a medium to large necrosis altered significantly stress values (P < 0.05) and pattern in the articular cartilage. Our study revealed that advanced core decompression can recover normal cartilage stress values and pattern in treated joint.

Interpretation: The presence of a large lesion increased the risk of femoral head collapse. Advanced core decompression with bone grafts can restore normal cartilage mechanics in hip postoperatively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinbiomech.2022.105635DOI Listing

Publication Analysis

Top Keywords

femoral head
20
hip joint
12
core decompression
12
necrotic lesion
12
models created
12
osteonecrosis femoral
8
hip models
8
treated models
8
hip
6
femoral
5

Similar Publications

Efficacy of small-diameter core decompression with platelet-rich plasma in early osteonecrosis of the femoral head: a retrospective study.

BMC Musculoskelet Disord

January 2025

Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China.

Background: Osteonecrosis of the femoral head (ONFH) is a challenging condition, primarily affecting young and middle-aged individuals, which results in hip dysfunction and, ultimately, femoral head collapse. However, the comparative effectiveness of joint-preserving procedures, particularly in the early stages of ONFH (ARCO stage I or II), remains inconclusive. This study aims to evaluate the efficacy of a novel technique called small-diameter core decompression (CD) combined with platelet-rich plasma (PRP), for the treatment of early-stage ONFH.

View Article and Find Full Text PDF

Aseptic loosening (AL) of artificial hip joints is the most common complication following hip replacement surgery. A total of eight patients diagnosed with AL following total hip arthroplasty (THA) undergoing total hip replacement and eight control patients diagnosed with avascular necrosis of femoral head (ANFH) or femoral neck fracture undergoing THA were enrolled. The samples of the AL group were from synovial tissue surrounding the lining/head/neck of the prosthesis, and the samples of the control group were from the synovium in the joint cavity.

View Article and Find Full Text PDF

Objective: By comparing the hip arthroplasty parameters planned with the AIHIP three-dimensional simulation surgery system, this study analyzes the accuracy of the new femoral-side "shoulder-to-shoulder" artificial anatomical marker positioning method in femoral-side prosthesis implantation and the prevention of leg length discrepancy in hip arthroplasty.

Methods: A retrospective collection of 47 patients who underwent initial total hip arthroplasty at our hospital from August 2020 to December 2022 and met the inclusion and exclusion criteria was used as the study subjects. The average age was 67.

View Article and Find Full Text PDF

Deep learning and genome-wide association meta-analyses of bone marrow adiposity in the UK Biobank.

Nat Commun

January 2025

University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK.

Bone marrow adipose tissue is a distinct adipose subtype comprising more than 10% of fat mass in healthy humans. However, the functions and pathophysiological correlates of this tissue are unclear, and its genetic determinants remain unknown. Here, we use deep learning to measure bone marrow adiposity in the femoral head, total hip, femoral diaphysis, and spine from MRI scans of approximately 47,000 UK Biobank participants, including over 41,000 white and over 6300 non-white participants.

View Article and Find Full Text PDF

Total hip arthroplasty preoperative planning for childhood hip disorders' sequelae: Focus on developmental dysplasia of the hip.

World J Orthop

December 2024

Department of Trauma and Orthopaedics, AOSP Terni, Terni 05100, Italy.

Developmental dysplasia of the hip (DDH) poses significant challenges in both childhood and adulthood, affecting up to 10 per 1000 live births in the United Kingdom and United States. While newborn screening aims to detect DDH early, missed diagnoses can lead to severe complications such as hip dysplasia and early onset osteoarthritis in adults. Treatment options range from less invasive procedures like hip-preserving surgery to more extensive interventions such as total hip arthroplasty (THA), depending on the severity of the condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!