Amyloid deposits and hyperphosphorylation of the tau protein are still believed to be the two main causes of Alzheimer's disease. However, newer studies show the beneficial (including antiradical and antimicrobial) effects of amyloid at physiological concentrations. Therefore, this study aimed to investigate the impact of three amyloid fragments - 25-35, 1-40, and 1-42 at concentrations close to physiological levels on the oxidative stress induced by the administration of lipopolysaccharide (LPS) or co-culturing with microglia cells. Differentiated SH-SY5Y cells were used, constituting a model of neuronal cells that were preincubated with LPS or supernatant collected from THP-1 cell culture. The cells were treated with amyloid-β fragments at concentrations of 0.001, 0.1, and 1.0 µM, and then biological assays were carried out. The results of the study support the antioxidant properties of Aβ, which may protect neurons from the damaging effects of neuroinflammation. All tested amyloid-β fragments reduced oxidative stress and increased the levels of enzymatic stress parameters - the activity of SOD, GPx and catalase. In addition, the administration of amyloid-β at low physiological concentrations also increased reduced glutathione (GSH) levels and the ratio between reduced and oxidized glutathione (GSH/GSSG), which is considered a good indicator of maintaining cellular redox balance. Furthermore, a stronger antioxidant effect of 1-40 fragment was observed, occurring in a wider range of concentrations, compared to the other tested fragments 25-35 and 1-42.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2022.112880DOI Listing

Publication Analysis

Top Keywords

sh-sy5y cells
8
cells preincubated
8
microglia cells
8
physiological concentrations
8
fragments 25-35
8
oxidative stress
8
amyloid-β fragments
8
cells
6
concentrations
5
amyloid-β
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!