A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Anti-neuroinflammatory effects of novel 5,6-dihydrobenzo[h]quinazolin-2-amine derivatives in lipopolysaccharide-stimulated BV2 microglial cells. | LitMetric

Anti-neuroinflammatory effects of novel 5,6-dihydrobenzo[h]quinazolin-2-amine derivatives in lipopolysaccharide-stimulated BV2 microglial cells.

Eur J Med Chem

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China. Electronic address:

Published: May 2022

Neuroinflammation is an intricate process that is associated with both normal and pathological conditions. Microglia-mediated neuroinflammation is known to lead to various neurodegenerative and neurological disorders. A series of 3,4-dihydronaphthalen-1(2H)-one derivatives (1-15) and novel 5,6-dihydrobenzo[h]quinazolin-2-amine derivatives (16-30) were synthesized and characterized by various analytical methods, such as NMR and HRMS. All compounds were evaluated for toxicity, screened for their anti-neuroinflammatory properties, and investigated for the potential molecular mechanism of lipopolysaccharide (LPS) induction in BV2 microglia. Structure activity relationship analysis showed that compound 17 substituted by the 7-fluorine atom on the A-ring and the 3-methoxy on the D-ring had more potential anti-neuroinflammatory activity by inhibiting the secretion of cytokines TNF-α and IL-6. The results of western blotting assay showed that 17 significantly blocked the activation and phosphorylation of IκBα, significantly reduce the expression of NLRP3 inflammatory vesicle-associated proteins, and thus inhibit the activation of NF-κB pathway. Thus, compound 17 was demonstrated to be an excellent potential therapeutic agent for the treatment of neuroinflammation-related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2022.114322DOI Listing

Publication Analysis

Top Keywords

novel 56-dihydrobenzo[h]quinazolin-2-amine
8
56-dihydrobenzo[h]quinazolin-2-amine derivatives
8
anti-neuroinflammatory effects
4
effects novel
4
derivatives lipopolysaccharide-stimulated
4
lipopolysaccharide-stimulated bv2
4
bv2 microglial
4
microglial cells
4
cells neuroinflammation
4
neuroinflammation intricate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!