Measuring cancer biomarkers at ultralow detection limit and high sensitivity could be a promising tool for early diagnosis, monitoring treatment and post-treatment recurrence. Soluble CD44 is a promising diagnostic and prognostic biomarker in several types of cancer including gastric, colon and breast cancer. Several highly sensitive biosensors have been built to measure this important biomarker. However, they did not reach attomolar level of detection. The aim of this work was to build a biosensor capable of detecting CD44 concentrations down to attomolar (aM) level while measuring it in a wide concentration range. Herein, we demonstrate a biosensor that offers 4 key advantages over existing platforms for CD44 detection: 1) detection of CD44 was carried out in a diluted serum down to attomolar level (4.68 aM) which is about 6 orders of magnitude lower than that of a traditional ELISA; 2) fabrication of the sensor is done in a fast way using inexpensive materials making it a disposable fiber optic biosensor; 3) detection of CD44 was performed in a wide dynamic range previously not shown in other similar biosensors; 4) a proof-of-concept experiment was performed using the biosensor to embed it in a catheter to measure the protein in flow conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2022.114217DOI Listing

Publication Analysis

Top Keywords

detection cd44
12
attomolar level
12
detection
6
cd44
6
biosensor
5
ultra-wide attomolar-level
4
attomolar-level limit
4
limit detection
4
cd44 biomarker
4
biomarker silanized
4

Similar Publications

Preliminary exploration of the association of CXCR6T lymphocytes in T2D.

Int Immunopharmacol

January 2025

State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China. Electronic address:

Type 2 diabetes (T2D) is a metabolic disease, in which inflammation is a key factor. It has been well established that T cells play important role in antigen-driven immune disorders or immune defense, but were less discussed in inflammatory metabolic diseases. However, accumulating evidences suggest that CD186 (also known as CXCR6)-positive tissue infiltrating T cells might play a key role in inflammatory metabolic diseases.

View Article and Find Full Text PDF

Late-onset hypogonadism (LOH) refers to sexual and non-sexual symptoms in men caused by age-related decreases in circulating testosterone. Leydig cells (LCs) transplantation is considered to be one of a viable approach for LOH therapy, but the limited source of LCs limits the application of this approach. The aim of this study was to induce the directed differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into LCs in vitro, and explore the potential involvement of Wnt/β-catenin signaling pathway in the differentiation process.

View Article and Find Full Text PDF

The role of oxidative stress metabolism during hepatocellular carcinoma (HCC) formation potentially allows for positron emission tomography (PET) imaging of oxidative stress activity for early and precise HCC detection. However, there is currently limited data available on oxidative-stress-related PET imaging for longitudinal monitoring of the pathophysiological changes during HCC formation. This work aimed to explore PET-based longitudinal monitoring of oxidative stress metabolism and determine the sensitivity of [18F]-5-fluoroaminosuberic acid ([18F]FASu) for assessing pathophysiological processes in diethylnitrosamine (DEN) induced rat HCC.

View Article and Find Full Text PDF

Osteoarthritis is a degenerative disease of cartilage, and exosome derived from mesenchymal stem cells (MSCs) are considered promising for treating inflammatory musculoskeletal disorders, although their mechanisms are not fully understood. This study aimed to investigate the effects of exosomes derived from canine bone marrow mesenchymal stem cells (cBMSCs-Exos) on the expression of inflammatory factors and genes related cartilage matrix metabolism in IL-1β-induced canine chondrocytes. Canine BMSCs were isolated and characterized for surface markers and trilineage differentiation.

View Article and Find Full Text PDF

Background: Premature ovarian insufficiency (POI) is a refractory disease that severely affects female fertility. The PERK/eIF-2α/ATF4/CHOP pathway is one of the classical pathways involved in the unfolded protein response to endoplasmic reticulum stress by regulating protein synthesis and promoting apoptosis. This study aimed to investigate the functional role and mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in the POI animal model through the PERK/eIF-2α/ATF4/CHOP pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!