A systematic review of life cycle assessment of solid waste management: Methodological trends and prospects.

Sci Total Environ

School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia. Electronic address:

Published: July 2022

Solid waste disposal has led to increasing concerns over resource, health, and environmental problems. These issues have been investigated using the Life Cycle Assessment (LCA) technique which helps identify the roots of varying hazards and allows decision-makers to improve the environmental performance of waste management practices. However, there is a lack of review studies that conducted meta-analysis related to developments in critical methodological steps of LCA on solid waste management. To fill this gap, this review paper examines 15 elements comprising the preference of journals, 13 LCA method-related characteristics, and economic assessment. Insights on the limitations and current practices of LCA applications, along with trends for future research, are provided. 240 studies on the LCA of SWM from 2009 until 2020 were systematically reviewed and classified into two major year-groups (i.e., 2009-2014 and 2015-2020) to investigate the trend changes. Among the studied elements, it is found that energy-related applications are on the increase in LCA studies on solid waste management. Anaerobic digestion facilities nearly double in appearance in the second year-group (2015-2020). There is also a more frequent occurrence of certain characterization methods like ReCiPe and CML. Functional units become more diverse, but are overall mostly defined on a mass basis. A frequently identified issue of many LCAs on solid waste management is the ambiguity of data sources such as out-of-date literature or inconsistent geographical references. By addressing issues of methodological standardization, this review study provides a basis to further increase the reliability of results of future LCA studies on solid waste management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.154903DOI Listing

Publication Analysis

Top Keywords

solid waste
24
waste management
24
life cycle
8
cycle assessment
8
lca studies
8
studies solid
8
waste
7
lca
7
solid
6
management
6

Similar Publications

Objective: Heavy metal pollution is one of the more recent problems of environmental degradation caused by rapid industrialization and human activity. The objective of this study was to isolate, screen, and characterize heavy metal-resistant bacteria from solid waste disposal sites.

Methods: In this study, a total of 18 soil samples were randomly selected from mechanical sites, metal workshops, and agricultural land that received wastewater irrigation.

View Article and Find Full Text PDF

Valorization of agro-industrial waste through solid-state fermentation: Mini review.

Biotechnol Rep (Amst)

March 2025

Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, P.O.Box 2666, United Arab Emirates.

Agriculture and industrial waste are produced in large volumes every year worldwide, causing serious concerns about their disposal. These wastes have high organic content, which microorganisms can easily assimilate into relevant value-added products. Valorization of agro-industrial waste is required for sustainable development.

View Article and Find Full Text PDF

Approximately 40-50% of municipal solid waste is organic and causing biogenic malodor and infections, due to inefficient treatment methods. Biorefinery-based bioremediation and valorization is in vogue against these conventional strategies since it combines unit operations for better efficiency and productivity. Deriving inspiration, the proposed strategy puts together a unique and compatible combination of processes.

View Article and Find Full Text PDF

Versatile nitrate-respiring heterotrophs are previously concealed contributors to sulfur cycle.

Nat Commun

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.

Heterotrophic denitrifiers play crucial roles in global carbon and nitrogen cycling. However, their inability to oxidize sulfide renders them vulnerable to this toxic molecule, which inhibits the key enzymatic reaction responsible for reducing nitrous oxide (NO), thereby raising greenhouse gas emissions. Here, we applied microcosm incubations, community-isotope-corrected DNA stable-isotope probing, and metagenomics to characterize a cohort of heterotrophic denitrifiers in estuarine sediments that thrive by coupling sulfur oxidation with denitrification through chemolithoheterotrophic metabolism.

View Article and Find Full Text PDF

This study employs mechanically synthesized nano-scrap carbon iron filings (nSCIF) as a cost-effective and sustainable catalyst in heterogeneous electro-Fenton process. The catalytic behaviour of nSCIF was studied for the oxidation of cytarabine (CBN) under the influence of various experimental parameters such as pH, catalyst dose and applied current density. The highest removal efficiency (~ 99%) was achieved in 90 min of reaction at pH 3, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!