Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pupil size changes constantly and is mainly determined by global luminance signals. In addition, the pupil responds to various cognitive and arousal processes, with larger pupil dilation observed in higher levels of cognitive or arousal processing. Although these task-evoked pupillary responses are extensively used in the pupil research, pupil analysis focusing on the frequency domain, particularly in the context of arousal and cognitive modulations, is less established. Fourier Transform method (FFT) has been used to understand the modulation of task difficulty on pupil oscillations. However, physiological signals are often characterized as non-linear and non-stationary waves, and the conventional spectral analytical method with linearity presumption is less appropriate to reveal modulation dynamics between time and frequency. Here, we used Hilbert-Huang Transform (HHT) to examine the time-frequency modulations on pupil size regulated by arousal, cognitive, and global luminance signals. Consistent with previous research, using FFT, higher spectral densities were obtained with lower luminance background. Moreover, higher spectral densities were found in the high emotional arousal condition. With HHT, we further demonstrated temporal changes on amplitude spectrum and inter-trial phase coherence (ITPC) in each intrinsic mode function (IMF), with stronger amplitudes in higher IMFs (i.e., low frequencies). Moreover, although global luminance, arousal and saccade preparation modulated pupil oscillatory responses, the modulation pattern in different IMFs was different. Together, our results demonstrated dynamics between the time and frequency domain on pupil oscillatory responses, highlighting the importance of examining the time-frequency interactions in the context of various pupil modulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpsycho.2022.03.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!