A transcriptomics and molecular biology based investigation reveals the protective effect and mechanism of carnosol on t-BHP induced HRMECs via Nrf2 signaling pathway.

Eur J Pharmacol

Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China. Electronic address:

Published: May 2022

AI Article Synopsis

Article Abstract

Human retinal microvascular endothelial cells (HRMECs) injury plays an essential role in the pathogenesis of diabetic retinopathy (DR). As one of the crucial pathogenetic factors, oxidative stress induces HRMECs apoptosis and microvascular lesions. Nuclear factor erythroid 2-related factor 2 (Nrf2) acts as a molecular switch in oxidative stress-induced HRMECs injury. The present study was designed to investigate the protective effect and underlying mechanism of carnosol, a potential Nrf2 agonist, in tert-butyl hydroperoxide (t-BHP) induced HRMECs oxidative stress injury. In this study, carnosol was found to inhibit HRMECs injury induced by t-BHP. Transcriptomics and molecular biology illustrated that the mechanism was associated with oxidative stress, vascular system development, apoptosis, cell cycle, cell adhesion, cytoskeleton, and nitric oxide biosynthesis. Carnosol directly scavenged free radicals or activated the Nrf2 signaling pathway to alleviate HRMECs oxidative stress. ML385 pretreatment or Nrf2 small interference RNA (siRNA) inhibited the protective effect of carnosol on HRMECs injury. Moreover, the apoptosis and cell cycle arrest in HRMECs were suppressed by carnosol. Treatment with carnosol could also effectively regulate the adhesion and cytoskeleton. Overall, our data provide a systematic perspective for the mechanism of carnosol against HRMECs oxidative stress injury and reveal that carnosol may be a candidate drug for DR therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2022.174933DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
hrmecs injury
16
mechanism carnosol
12
hrmecs oxidative
12
hrmecs
10
carnosol
9
transcriptomics molecular
8
molecular biology
8
t-bhp induced
8
induced hrmecs
8

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

L-carnitine protects against oxidative damage and neuroinflammation in cerebral cortex of rats submitted to chronic chemically-induced model of hyperphenylalaninemia.

Metab Brain Dis

January 2025

Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.

Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.

View Article and Find Full Text PDF

Background: Infertility is a significant issue in spinal cord injury (SCI) patients. Men with SCI often experience erectile and ejaculatory dysfunctions, and low sperm quality leading to impaired fertility. In this study, we investigated the effectiveness of Erythropoietin (EPO)alginate/chitosan (CH-AL) hydrogel on SCI-induced male rat infertility.

View Article and Find Full Text PDF

Novel Therapies for Right Ventricular Failure.

Curr Cardiol Rep

January 2025

Pediatric Advanced Heart Failure and Heart Transplant Program, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.

Purpose Of Review: Traditionally viewed as a passive player in circulation, the right ventricle (RV) has become a pivotal force in hemodynamics. RV failure (RVF) is a recognized complication of primary cardiac and pulmonary vascular disorders and is associated with a poor prognosis. Unlike treatments for left ventricular failure (LVF), strategies such as adrenoceptor signaling inhibition and renin-angiotensin system modulation have shown limited success in RVF.

View Article and Find Full Text PDF

X-ray Responsive Antioxidant Drug-Free Hydrogel for Treatment of Radiation Skin Injury.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.

Radiotherapy (RT) is widely applied in tumor therapy, but inevitable side effects, especially for skin radiation injury, are still a fatal problem and life-threatening challenge for tumor patients. The main components of topical radiation protection preparations currently available on the market are antioxidants, such as SOD, which are limited by their unstable activity and short duration of action, making it difficult to achieve the effects of radiation protection and skin radiation damage treatment. Therefore, we designed a drug-free antioxidant hydrogel patch with encapsulated bioactive epidermal growth factor (EGF) for the treatment of radiation skin injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!