A silk fibroin based bioadhesive with synergistic photothermal-reinforced antibacterial activity.

Int J Biol Macromol

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China.; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China.; Med-X Center for Materials, Sichuan University, Chengdu 610041, China.

Published: June 2022

Bioadhesives have gained considerable popularity for application in wound closure. However, applying bioadhesives incurs risks associated with bacterial infection during wound healing. Hence, in this study, a silk fibroin based bioadhesive was constructed via employing natural macromolecule, silk fibroin (SF), to spontaneously coassemble with natural plant polyphenol, tannic acid (TA), and iron oxide nanoparticles (FeO NPs). In the system, the natural macromolecule SF plays a key role in fabricating the macromolecular network matrix due to the change of the secondary structure of SF (from random coil to β-sheet) under the trigger of TA. Importantly, the strong hydrogen bonding interactions between SF and TA, and the coordination bonds between TA and FeO NPs endow the bioadhesive with high extensibility, self-healing properties, and considerable wet adhesion. Meanwhile, the synergy between the inherent photothermal properties of FeO NPs and TA/Fe complexes under near-infrared (NIR) radiation enables the bioadhesive superior photothermal-reinforced antibacterial activity. The multifunctional natural macromolecule bioadhesive is a potential candidate in clinical wound management for improved outcomes, especially in infected wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.03.136DOI Listing

Publication Analysis

Top Keywords

silk fibroin
12
natural macromolecule
12
feo nps
12
fibroin based
8
based bioadhesive
8
photothermal-reinforced antibacterial
8
antibacterial activity
8
bioadhesive
5
bioadhesive synergistic
4
synergistic photothermal-reinforced
4

Similar Publications

Review on application of silk fibroin hydrogels in the management of wound healing.

Int J Biol Macromol

January 2025

State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China. Electronic address:

Wounds are regarded as disruptions in the integrity of human skin tissues, and the process of wound healing is often characterized as protracted and complex, primarily due to the potential infection or inflammation caused by microorganisms. The quest for innovative solutions that accelerate wound healing while prioritizing patient safety and comfort has emerged as a focal point. Within this pursuit, silkworm silk fibroin-a natural polymer extracted from silk cocoons-exhibits a distinctive combination of properties including biocompatibility, biodegradability, superior mechanical strength, water absorption, and low immunogenicity, which align closely with the demands of contemporary wound care.

View Article and Find Full Text PDF

Injectable biomimetic hydrogel based on modified chitosan and silk fibroin with decellularized cartilage extracellular matrix for cartilage repair and regeneration.

Int J Biol Macromol

January 2025

Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94th, Tianjin 300071, PR China. Electronic address:

Cartilage defect repair remains a challenge for clinicians due to the limited self-healing capabilities of cartilage. Microenvironment-specific biomimetic hydrogels have shown great potential in cartilage regeneration because of their excellent biological properties. In this study, a hydrogel system consisting of p-hydroxybenzene propanoic acid-modified chitosan (PC), silk fibroin (SF) and decellularized cartilage extracellular matrix (DCM) was prepared.

View Article and Find Full Text PDF

The incidence rate and mortality rate of breast cancer remain high, and there is an urgent need for safe and effective drugs. The excellent biological activity of hesperidin (HE) is a potential drug for the treatment of breast cancer. In this study, silk fibroin peptides (SFP) were used as delivery carriers and HE loaded SFP nanofibers (SFP/HE NFs) was prepared.

View Article and Find Full Text PDF

Chronic implantable flexible serpentine probe reveals impaired spatial coding of place cells in epilepsy.

Natl Sci Rev

February 2025

State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.

The development of minimally invasive and reliable electrode probes for neural signal recording is crucial for advancing neuroscience and treating major brain disorders. Flexible neural probes offer superior long-term recording capabilities over traditional rigid probes. This study introduces a parylene-based serpentine electrode probe for stable, long-term neural monitoring.

View Article and Find Full Text PDF

Silk fibroin (SF), a natural polymer with very desirable physicochemical and biological properties, is an ideal material for crafting biocompatible scaffolds in tissue engineering. However, conventional methods for removing the sericin layer and dissolving SF often involve environmentally harmful reagents and processes, requiring extensive dialysis procedures to purify the fibers produced. Such processes may also damage the surface and bulk properties of the SF produced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!