A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lignin-based electrospinning nanofibers for reversible iodine capture and potential applications. | LitMetric

Lignin-based electrospinning nanofibers for reversible iodine capture and potential applications.

Int J Biol Macromol

Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.

Published: May 2022

The capture of radioactive iodine has recently attracted much attention due to the release of radioactive iodine during nuclear waste disposal and disasters. Exploring highly efficient, sustainable, and eco-friendly materials for capturing radioactive iodine has great significance in developing safe nuclear energy. We reported highly efficient, natural, lignin-based, electrospun nanofibers (LNFs) for reversible radioiodine capture. Abundant iodine adsorption sites, such as functional groups and the interaction between the intermolecular forces exist in LNFs. The capacity of the LNFs for the saturated adsorption of iodine was found to be 220 mg·g, which is higher than that of the majority of bio-based adsorbents studied. Moreover, the LNFs exhibited an excellent recycling behavior, and their absorption capacity remained at 84.72% after 10 recycles. Therefore, the results imply that the lignin-based nanofibers can act as a natural, sustainable and eco-friendly packed material for the purification columns in industrial applications. The results demonstrate that the novel, nanostructured, natural biomass, as an ideal candidate has the potential for practical nuclear wastewater purification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.03.184DOI Listing

Publication Analysis

Top Keywords

radioactive iodine
12
highly efficient
8
sustainable eco-friendly
8
iodine
6
lignin-based electrospinning
4
electrospinning nanofibers
4
nanofibers reversible
4
reversible iodine
4
iodine capture
4
capture potential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!