A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Estimation in the multinomial reencounter model - Where do migrating animals go and how do they survive in their destination area? | LitMetric

AI Article Synopsis

  • The study focuses on how the spatial variation in survival impacts the fitness and population dynamics of migrating animals, emphasizing the importance of understanding their use of space during different cycles of the year.* -
  • A fully stochastic model is developed to analyze dead recovery data of marked animals, considering parameters like space use, survival, and recovery probabilities, using advanced statistical methods.* -
  • The model successfully provides unbiased survival and recovery estimates when sample sizes are sufficient and is validated with real data from European robins, revealing specific patterns of their non-breeding area use.*

Article Abstract

Spatial variation in survival has individual fitness consequences and influences population dynamics. Which space animals use during the annual cycle determines how they are affected by this spatial variability. Therefore, knowing spatial patterns of survival and space use is crucial to understand demography of migrating animals. Extracting information on survival and space use from observation data, in particular dead recovery data, requires explicitly identifying the observation process. We build a fully stochastic model for animals marked in populations of origin, which were found dead in spatially discrete destination areas. The model acts on the population level and includes parameters for use of space, survival and recovery probability. It is based on the division coefficient and the multinomial reencounter model. We use a likelihood-based approach, derive Restricted Maximum Likelihood-like estimates for all parameters and prove their existence and uniqueness. In a simulation study we demonstrate the performance of the model by using Bayesian estimators derived by the Markov chain Monte Carlo method. We obtain unbiased estimates for survival and recovery probability if the sample size is large enough. Moreover, we apply the model to real-world data of European robins Erithacus rubecula ringed at a stopover site. We obtain annual survival estimates for different spatially discrete non-breeding areas. Additionally, we can reproduce already known patterns of use of space for this species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2022.111108DOI Listing

Publication Analysis

Top Keywords

multinomial reencounter
8
reencounter model
8
migrating animals
8
survival space
8
spatially discrete
8
survival recovery
8
recovery probability
8
model
6
survival
6
space
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!