Metformin to treat Huntington disease: A pleiotropic drug against a multi-system disorder.

Mech Ageing Dev

Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Joint Unit for Rare Diseases IIS La Fe-CIPF, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain. Electronic address:

Published: June 2022

Huntington disease (HD) is a neurodegenerative disorder produced by an expansion of CAG repeats in the HTT gene. Patients of HD show involuntary movements, cognitive decline and psychiatric impairment. People carrying abnormally long expansions of CAGs (more than 35 CAG repeats) produce mutant huntingtin (mHtt), which encodes tracks of polyglutamines (polyQs). These polyQs make the protein prone to aggregate and cause it to acquire a toxic gain of function. Principally affecting the frontal cortex and the striatum, mHtt disrupts many cellular functions. In addition, this protein is expressed ubiquitously, and some reports show that many other cell types are affected by the toxicity of mHtt. Several studies reported that metformin, a widely-used anti-diabetic drug, is neuroprotective in models of HD. Here, we provide a review of the benefits of this substance to treat HD. Metformin is a pleiotropic drug, modulating different targets such as AMPK, insulin signalling and many others. These molecules regulate autophagy, chaperone expression, and more, which in turn reduce mHtt toxicity. Moreover, metformin alters gut microbiome and its metabolic processes. The study of potential targets, interactions between the drug, host and microbiome, or genomic and pharmacogenomic approaches may allow us to design personalised medicine to treat HD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mad.2022.111670DOI Listing

Publication Analysis

Top Keywords

huntington disease
8
pleiotropic drug
8
cag repeats
8
metformin
4
metformin treat
4
treat huntington
4
disease pleiotropic
4
drug
4
drug multi-system
4
multi-system disorder
4

Similar Publications

Background: There are no disease modifying therapies for Huntington's disease (HD), a rare but fatal genetic neurodegenerative condition. To develop and test new management strategies, a better understanding of the mechanisms underlying HD progression is needed. Aberrant changes in thalamo-cortical and striato-cerebellar circuitry have been observed in asymptomatic HD, along with transient enlargement of the dentate nucleus.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.

View Article and Find Full Text PDF

ARCH: Large-scale knowledge graph via aggregated narrative codified health records analysis.

J Biomed Inform

January 2025

Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, USA; VA Boston Healthcare System, 150 S Huntington Ave, Boston, 02130, MA, USA. Electronic address:

Objective: Electronic health record (EHR) systems contain a wealth of clinical data stored as both codified data and free-text narrative notes (NLP). The complexity of EHR presents challenges in feature representation, information extraction, and uncertainty quantification. To address these challenges, we proposed an efficient Aggregated naRrative Codified Health (ARCH) records analysis to generate a large-scale knowledge graph (KG) for a comprehensive set of EHR codified and narrative features.

View Article and Find Full Text PDF

Vitamin B (thiamine) plays an important role in human metabolism. It is essential for the proper growth and development of the body and has a positive effect on the functioning of the digestive, cardiovascular, and nervous systems. Additionally, it stimulates the brain and improves the psycho-emotional state.

View Article and Find Full Text PDF

Associations Between Diabetes Mellitus and Neurodegenerative Diseases.

Int J Mol Sci

January 2025

Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland.

Diabetes mellitus (DM) and neurodegenerative diseases/disturbances are worldwide health problems. The most common chronic conditions diagnosed in persons 60 years and older are type 2 diabetes mellitus (T2DM) and cognitive impairment. It was found that diabetes mellitus is a major risk for cognitive decline, dementia, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!