Recently, there has been great progress in the field of extremely sensitive and precise detection of bioanalytes. The importance of the utilization of nanoparticles in biosensors has been recognized due to their unique properties. Specifically, nanoparticles of gold, silver, and magnetic plus graphene, quantum dots, and nanotubes of carbon are being keenly considered for utilization within biosensors to detect nucleic acids, glucose, or pathogens (bacteria as well as a virus). Taking advantage of nanoparticles, faster and sensitive biosensors can be developed. Here, we review the nanoparticles' contribution to the biosensors field and their potential applications.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568026622666220401160121DOI Listing

Publication Analysis

Top Keywords

biosensors
5
advancement nanoparticle-based
4
nanoparticle-based biosensors
4
biosensors point-of-care
4
point-of-care vitro
4
vitro diagnostics
4
diagnostics great
4
great progress
4
progress field
4
field extremely
4

Similar Publications

Precision Metal Nanoclusters Meet Proteins: Crafting Next-Gen Hybrid Materials.

ACS Nano

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.

Metal nanoclusters (NCs), owing to their atomic precision and unique molecule-like properties, have gained widespread attention for applications ranging from catalysis to bioimaging. In recent years, proteins, with their hierarchical structures and diverse functionalities, have emerged as good candidates for functionalizing metal NCs, rendering metal NC-protein conjugates with combined and even synergistically enhanced properties featured by both components. In this Perspective, we explore key questions regarding why proteins serve as complementary partners for metal NCs, the methodologies available for conjugating proteins with metal NCs, and the characterization techniques necessary to elucidate the structures and interactions within this emerging bionano system.

View Article and Find Full Text PDF

Biosensors have revolutionized the diagnosis of infectious diseases in livestock by offering sensitive and rapid detection methods for important pathogens. These devices, particularly luciferase-based biosensors, convert biological responses into quantifiable signals, enabling the real-time, non-invasive monitoring of critical biomarkers. This review explores the development and advantages of biosensors, focusing on their applications in detecting important livestock pathogens, including bacteria, parasites, and viruses.

View Article and Find Full Text PDF

The disinfection of drinking water is essential for eliminating pathogens and preventing waterborne diseases. However, this process generates various disinfection byproducts (DBPs), which toxicological research indicates can have detrimental effects on living organisms. Moreover, the safety of these DBPs has not been sufficiently assessed, underscoring the need for a comprehensive evaluation of their toxic effects and associated health risks.

View Article and Find Full Text PDF

The capture of magnetic nanoparticles (MNPs) is essential in the separation and detection of MNPs for applications such as magnetic biosensing. The sensitivity of magnetic biosensors inherently depends upon the distribution of captured MNPs within the sensing area. We previously demonstrated that the distribution of MNPs captured from evaporating droplets by ferromagnetic antidot nanostructures can be controlled via an external magnetic field.

View Article and Find Full Text PDF

MoS-Plasmonic Hybrid Platforms: Next-Generation Tools for Biological Applications.

Nanomaterials (Basel)

January 2025

Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.

The combination of molybdenum disulfide (MoS) with plasmonic nanomaterials has opened up new possibilities in biological applications by combining MoS's biocompatibility and high surface area with the optical sensitivity of plasmonic metals. These MoS-plasmonic hybrid systems hold great promise in areas such as biosensing, bioimaging, and phototherapy, where their complementary properties facilitate improved detection, real-time visualization, and targeted therapeutic interventions. MoS's adjustable optical features, combined with the plasmon resonance of noble metals such as gold and silver, enhance signal amplification, enabling detailed imaging and selective photothermal or photodynamic therapies while minimizing effects on healthy tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!