In accordance with the Beer-Lambert law, absorbance is proportional to concentration and optical path length of the absorbers in the sample, and in a linear relationship with total column concentration (product of concentration and optical path length) at a single wavelength. However, limitation of spectral resolution will result in linear deviation with the Beer-Lambert law in actual measurement. Regarding additivity of polychromatic light intensity as the theoretical basis, this paper attributed linear deviation with the Beer-Lambert law to spectral resolution, concentration and light intensity, and verified this explanation by measuring sulfur dioxide at various total column concentrations using spectrometers with different spectral resolutions in the waveband range of 216-230 nm. It was found that linear deviation with the Beer-Lambert law was in negative correlation with spectral resolution, and in positive correlation with total column concentration, and absorbance could be considered to be linear with total column concentration (below 171.4 mg/m) of sulfur dioxide in the wavelength range of 216-230 nm. In addition, it was also proved that linear deviation increases with decreasing light intensity at a fixed sulfur dioxide column concentration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2022.121192 | DOI Listing |
J Sep Sci
January 2025
Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
As a veterinary drug, sulfamethazine is frequently used to control animal diseases. In this study, a novel molecularly imprinted photonic crystal sensor for the fast visual detection of sulfamethazine in milk and chicken has been developed. Under optimum preparation conditions, a molecularly imprinted, photonic crystal with an anti-opal structure and a clear bright color was prepared and characterized.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Academic Respiratory Medicine, Centre for Cardiovascular and Metabolic Research, Hull York Medical School, Cottingham HU16 5JQ, UK.
Coughing is a symptom of many respiratory diseases. An increased amount of coughs may signal an (upcoming) health issue, while a decreasing amount of coughs may indicate an improved health status. The presence of a cough can be identified by a cough classifier.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Division of Robotics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
Wearable motion capture gloves enable the precise analysis of hand and finger movements for a variety of uses, including robotic surgery, rehabilitation, and most commonly, virtual augmentation. However, many motion capture gloves restrict natural hand movement with a closed-palm design, including fabric over the palm and fingers. In order to alleviate slippage, improve comfort, reduce sizing issues, and eliminate movement restrictions, this paper presents a new low-cost data glove with an innovative open-palm and finger-free design.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Automatic Control, Lodz University of Technology, 90-537 Lodz, Poland.
Warping is a crucial process that connects two main stages of production: yarn manufacturing and fabric creation. Two interrelated parameters affect the efficiency of this technological process: warping speed and the ability to swiftly detect the yarn breaks caused by various defects. The faster a break is detected and the warping machine stopped, the higher the machine's working speed can be.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!