Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pluronic/lipid mix promises stealth liposomes with long circulation time and long-term stability for pharmaceutical applications. However, the influence of Pluronics on several aspects of lipid membranes has not been fully elucidated. Herein it was described the effect of Pluronics on the structured water, alkyl chain conformation, and kinetic stability of dimyristoylphosphatidylcholine (DMPC) liposomes using interfacial and deeper fluorescent probes along with computational molecular modeling data. Interfacial water changed as a function of Pluronics' hydrophobicity with polypropylene oxide (PPO) anchoring the copolymers in the lipid bilayer. Pluronics with more than 30-40 PO units had facilitated penetration at the bilayer while shorter PPO favored a more interfacial interaction. Low Pluronic concentrations provided long-term stability of vesicles by steric effects of polyethylene oxide (PEO), but high amounts destabilized the vesicles as a sum of water-bridge cleavage at the polar head group and the reduced alkyl-alkyl interactions among the lipids. The high kinetic stability of Pluronic/DMPC vesicles is a proof-of-concept of its advantages and applicability in nanotechnology over conventional liposome-based pharmaceutical products for future biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2022.121178 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!