Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Climatic and non-climatic factors affect the chemical weathering of silicate rocks, which in turn affects the CO concentration in the atmosphere on a long-term scale. However, the coupling effects of these factors prevent us from clearly understanding of the global weathering carbon sink of silicate rocks. Here, using the improved first-order model with correlated factors and non-parametric methods, we produced spatiotemporal data sets (0.25° × 0.25°) of the global silicate weathering carbon-sink flux (SCSF ) under different scenarios (SSPs) in present (1950-2014) and future (2015-2100) periods based on the Global River Chemistry Database and CMIP6 data sets. Then, we analyzed and identified the key regions in space where climatic and non-climatic factors affect the SCSF . We found that the total SCSF was 155.80 ± 90 Tg C yr in present period, which was expected to increase by 18.90 ± 11 Tg C yr (12.13%) by the end of this century. Although the SCSF in more than half of the world was showing an upward trend, about 43% of the regions were still showing a clear downward trend, especially under the SSP2-4.5 scenario. Among the main factors related to this, the relative contribution rate of runoff to the global SCSF was close to 1/3 (32.11%), and the main control regions of runoff and precipitation factors in space accounted for about 49% of the area. There was a significant negative partial correlation between leaf area index and silicate weathering carbon sink flux due to the difference between the vegetation types. We have emphasized quantitative analysis the sensitivity of SCSF to critical factors on a spatial grid scale, which is valuable for understanding the role of silicate chemical weathering in the global carbon cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.16186 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!