Public lands of the USA can play an important role in addressing the climate crisis. About 85% of public lands in the western USA are grazed by domestic livestock, and they influence climate change in three profound ways: (1) they are significant sources of greenhouse gases through enteric fermentation and manure deposition; (2) they defoliate native plants, trample vegetation and soils, and accelerate the spread of exotic species resulting in a shift in landscape function from carbon sinks to sources of greenhouse gases; and (3) they exacerbate the effects of climate change on ecosystems by creating warmer and drier conditions. On public lands one cow-calf pair grazing for one month (an "animal unit month" or "AUM") produces 875 kg COe through enteric fermentation and manure deposition with a social carbon cost of nearly $36 per AUM. Over 14 million AUMs of cattle graze public lands of the western USA each year resulting in greenhouse gas emissions of 12.4 Tg COe year. The social costs of carbon are > $500 million year or approximately 26 times greater than annual grazing fees collected by managing federal agencies. These emissions and social costs do not include the likely greater ecosystems costs from grazing impacts and associated livestock management activities that reduce biodiversity, carbon stocks and rates of carbon sequestration. Cessation of grazing would decrease greenhouse gas emissions, improve soil and water resources, and would enhance/sustain native species biodiversity thus representing an important and cost-effective adaptive approach to climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9079022PMC
http://dx.doi.org/10.1007/s00267-022-01633-8DOI Listing

Publication Analysis

Top Keywords

public lands
20
climate change
20
lands western
12
western usa
12
sources greenhouse
8
greenhouse gases
8
enteric fermentation
8
fermentation manure
8
manure deposition
8
greenhouse gas
8

Similar Publications

Ecogenomic insights into the resilience of keystone Blastococcus Species in extreme environments: a comprehensive analysis.

BMC Genomics

January 2025

Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, University of Carthage, National Institute of Applied Sciences and Technology, Tunis, 2080, Tunisia.

Background: The stone-dwelling genus Blastococcus plays a key role in ecosystems facing extreme conditions such as drought, salinity, alkalinity, and heavy metal contamination. Despite its ecological significance, little is known about the genomic factors underpinning its adaptability and resilience in such harsh environments. This study investigates the genomic basis of Blastococcus's adaptability within its specific microniches, offering insights into its potential for biotechnological applications.

View Article and Find Full Text PDF

Growth, physiological and molecular response of calcium and salicylic acid primed wheat under lead stress.

Mol Biol Rep

January 2025

Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt.

Background: Heavy metal contamination, particularly from lead (Pb), poses a significant threat to plant agriculture worldwide, adversely affecting growth, physiological functions, and yield. Signalling molecules such as calcium and salicylic acid are known to mitigate various stresses in plants, prompting this study to explore their interaction with Pb stress in wheat.

Methods: A pot experiment was conducted in which wheat grains were primed with either distilled water, 5 mM calcium (Ca), or 0.

View Article and Find Full Text PDF

Large-scale and long-term wildlife research and monitoring using camera traps: a continental synthesis.

Biol Rev Camb Philos Soc

January 2025

Wildlife Observatory of Australia (WildObs), Queensland Cyber Infrastructure Foundation (QCIF), Brisbane, Queensland, 4072, Australia.

Camera traps are widely used in wildlife research and monitoring, so it is imperative to understand their strengths, limitations, and potential for increasing impact. We investigated a decade of use of wildlife cameras (2012-2022) with a case study on Australian terrestrial vertebrates using a multifaceted approach. We (i) synthesised information from a literature review; (ii) conducted an online questionnaire of 132 professionals; (iii) hosted an in-person workshop of 28 leading experts representing academia, non-governmental organisations (NGOs), and government; and (iv) mapped camera trap usage based on all sources.

View Article and Find Full Text PDF

Climate warming has become a hot issue of common concern all over the world, and wind energy has become an important clean energy source. Wind farms, usually built in wild lands like grassland, may cause damage to the initial ecosystem and biodiversity. However, the impact of wind farms on the functional diversity of plant communities remains a subject with unclear outcomes.

View Article and Find Full Text PDF

Soil data from the Barbastro-Balaguer gypsum belt, NE Spain.

Data Brief

February 2025

Estación Experimental de Aula Dei, EEAD - CSIC, Ave. Montañana 1005, 50059 Zaragoza, Spain.

The dataset [1] hosts pedological info and images of the lands -locally known as - of the outcropping gypsiferous core of the Barbastro-Balaguer anticline (Fig. 1). It stands out in the landscape for the linear reliefs due to outcrops of dipping strata with differential resistance to erosion, and also because of its whitish color (Fig.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!