Vestigial-like family member 3 (VGLL3) is a cofactor for TEA domain transcription factors (TEADs). Although VGLL3 is known to be highly expressed and stimulate cell proliferation in mesenchymal cancer cells, its involvement in mesenchymal phenotypes is largely unknown. In this study, we found that VGLL3 promotes epithelial-to-mesenchymal transition (EMT)-like phenotypic changes. We found that A549 human lung cancer cells stably expressing VGLL3 exhibit spindle-like morphological changes, reduction in the epithelial marker E-cadherin and induction of the mesenchymal marker Snail. Notably, VGLL3-expressing cells exhibited enhanced motility. The DNA-binding protein high-mobility group AT-hook 2 (HMGA2) was found to be a target of the VGLL3-TEAD4 complex, and HMGA2 knockdown repressed EMT-like phenotypic changes in VGLL3-expressing cells. VGLL3-dependent phenotypic changes are involved in transforming growth factor-β (TGF-β)-induced EMT progression. VGLL3 or HMGA2 knockdown repressed the motility of the mesenchymal breast cancer MDA-MB-231 cells. Importantly, high levels of VGLL3 expression were shown to have a positive correlation with poor prognosis in various human cancers, such as breast, colon, ovarian, head and neck, pancreatic, renal, gastric and cervical cancers. These results suggest that VGLL3 promotes EMT-like cell motility by inducing HMGA2 expression and accelerates cancer progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077286 | PMC |
http://dx.doi.org/10.1111/jcmm.17279 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy.
Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Division of Biochemistry and Molecular Biology, Federal State Budgetary Educational Institution of Higher Education "Siberian State Medical University" of the Ministry of Health of Russia, 634050 Tomsk, Russia.
Background: Over the past five years, the pregnancy rate in assisted reproductive technology (ART) programs in Russia has remained relatively stable. The aim of this study was to assess the distribution of monocyte and macrophage subsets in the blood and follicular fluid of infertile women undergoing assisted reproductive technology.
Methods: The study involved 45 women with a mean age of 35 ± 4.
Front Biosci (Landmark Ed)
January 2025
Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.
Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China.
Endometrial Cancer (EC) is one of the most common gynecological malignancies, ranking first in developed countries and regions. The occurrence and development of EC is closely associated with genetic mutations. mutation, in particular, can lead to the dysfunction of numerous regulatory factors and alteration of the tumor microenvironment (TME).
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.
Sulfatides or 3-O-sulfogalactosylceramide are negatively charged sulfated glycosphingolipids abundant in the brain and kidneys and play crucial roles in nerve impulse conduction and urinary pH regulation. Sulfatides are present in the liver, specifically in the biliary tract. Sulfatides are self-lipid antigens presented by cholangiocytes to activate cluster of differentiation 1d (CD1d)-restricted type II natural killer T (NKT) cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!