A hybrid field-effect transistor (HyFET), superior for power electronic applications, can be created by harnessing the merits of two representative wide-bandgap semiconductors, gallium nitride (GaN) and silicon carbide (SiC). Yet, the incompactness in the epitaxy techniques hinders the development of the HyFET-GaN is usually grown on on-axis foreign substrates including SiC, whereas SiC homoepitaxy prefers off-axis substrates. This work presents a GaN-based heterostructure epitaxially grown on a conventional 4° off-axis 4H-SiC substrate, which manifests its high quality and suitability for constructing GaN-based high-electron-mobility transistors, thereby suggesting a practical approach to realizing HyFETs. In the meanwhile, a distinct two-step biaxial strain-relaxation process is proposed and studied with comprehensive characterizations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202201169 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!