The surface of metal implants serves as a powerful signaling cue for cells. Its properties play an essential role in stabilizing the bone-implant interface and facilitating the early osseointegration by encouraging bone deposition on the surface. However, effective strategies to deliver cells to the metal surfaces are yet to be explored. Here, a bioprinting process, called reactive jet impingement (ReJI), is used to deposit high concentrations (4 × 10  cells mL ) of mesenchymal stromal cells (MSCs) within hydrogel matrices directly onto the titanium alloy surfaces that vary in surface roughness and morphology. In this proof-of-concept study, cell-hydrogel-metal systems are fabricated with the aim of enhancing bioactivity through delivering MSCs in hydrogels at the bone-implant interface. These results show that the high cell concentrations encourage quick cell-biomaterial interactions at the hydrogel-metal surface interface, and cell morphology is influenced by the surface type. Cells migrate from the hydrogels and deposit mineralized matrix rich in calcium and phosphorus on the titanium alloy surfaces. The authors demonstrate that ReJI bioprinting is a promising tool to deliver cells in a 3D environment before implantation that can be used when developing a new generation of medical devices for bone tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.202200071DOI Listing

Publication Analysis

Top Keywords

titanium alloy
12
alloy surfaces
12
bone-implant interface
8
deliver cells
8
surface
5
cells
5
bioprinting cell-laden
4
cell-laden hydrogels
4
hydrogels titanium
4
surfaces
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!