Characterization of nitrilases from Variovorax boronicumulans that functions in insecticide flonicamid degradation and β-cyano-L-alanine detoxification.

J Appl Microbiol

Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, China.

Published: August 2022

Aims: To characterize the functions of nitrilases of Variovorax boronicumulans CGMCC 4969 and evaluate flonicamid (FLO) degradation and β-cyano-L-alanine (Ala(CN)) detoxification by this bacterium.

Methods And Results: Variovorax boronicumulans CGMCC 4969 nitrilases (NitA and NitB) were purified, and substrate specificity assay indicated that both of them degraded insecticide FLO to N-(4-trifluoromethylnicotinoyl)glycinamide (TFNG-AM) and 4-(trifluoromethyl)nicotinol glycine (TFNG). Ala(CN), a plant detoxification intermediate, was hydrolysed by NitB. Escherichia coli overexpressing NitA and NitB degraded 41.2 and 93.8% of FLO (0.87 mmol·L ) within 1 h, with half-lives of 1.30 and 0.25 h, respectively. NitB exhibited the highest nitrilase activity towards FLO. FLO was used as a substrate to compare their enzymatic properties. NitB was more tolerant to acidic conditions and organic solvents than NitA. Conversely, NitA was more tolerant to metal ions than NitB. CGMCC 4969 facilitated FLO degradation in soil and surface water and utilized Ala(CN) as a sole nitrogen source for growth.

Conclusions: CGMCC 4969 efficiently degraded FLO mediated by NitA and NitB; NitB was involved in Ala(CN) detoxification.

Significance And Impact Of The Study: This study promotes our understanding of versatile functions of nitrilases from CGMCC 4969 that is promising for environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jam.15561DOI Listing

Publication Analysis

Top Keywords

cgmcc 4969
20
variovorax boronicumulans
12
nita nitb
12
nitrilases variovorax
8
degradation β-cyano-l-alanine
8
functions nitrilases
8
boronicumulans cgmcc
8
flo degradation
8
nitb
8
flo
7

Similar Publications

Asp-tRNA/Glu-tRNA amidotransferase A subunit-like amidase mediates the degradation of insecticide flonicamid by Variovorax boronicumulans CGMCC 4969.

Sci Total Environ

June 2024

Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China. Electronic address:

The main metabolic product of the pyridinecarboxamide insecticide flonicamid, N-(4-trifluoromethylnicotinyl)glycinamide (TFNG-AM), has been shown to have very high mobility in soil, leading to its accumulation in the environment. Catabolic pathways of flonicamid have been widely reported, but few studies have focused on the metabolism of TFNG-AM. Here, the rapid transformation of TFNG-AM and production of the corresponding acid product N-(4-trifluoromethylnicotinoyl) glycine (TFNG) by the plant growth-promoting bacterium Variovorax boronicumulans CGMCC 4969 were investigated.

View Article and Find Full Text PDF

Characterization of nitrilases from Variovorax boronicumulans that functions in insecticide flonicamid degradation and β-cyano-L-alanine detoxification.

J Appl Microbiol

August 2022

Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, China.

Aims: To characterize the functions of nitrilases of Variovorax boronicumulans CGMCC 4969 and evaluate flonicamid (FLO) degradation and β-cyano-L-alanine (Ala(CN)) detoxification by this bacterium.

Methods And Results: Variovorax boronicumulans CGMCC 4969 nitrilases (NitA and NitB) were purified, and substrate specificity assay indicated that both of them degraded insecticide FLO to N-(4-trifluoromethylnicotinoyl)glycinamide (TFNG-AM) and 4-(trifluoromethyl)nicotinol glycine (TFNG). Ala(CN), a plant detoxification intermediate, was hydrolysed by NitB.

View Article and Find Full Text PDF

The Plant Growth-Promoting Rhizobacterium Variovorax boronicumulans CGMCC 4969 Regulates the Level of Indole-3-Acetic Acid Synthesized from Indole-3-Acetonitrile.

Appl Environ Microbiol

August 2018

Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China

is a metabolically diverse genus of plant growth-promoting rhizobacteria (PGPR) that engages in mutually beneficial interactions between plants and microbes. Unlike most PGPR, cannot synthesize the phytohormone indole-3-acetic acid (IAA) via tryptophan. However, we found that strain CGMCC 4969 can produce IAA using indole-3-acetonitrile (IAN) as the precursor.

View Article and Find Full Text PDF

Acrylamide biodegradation ability and plant growth-promoting properties of Variovorax boronicumulans CGMCC 4969.

Biodegradation

November 2013

Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.

Species of the genus Variovorax are often isolated from nitrile or amide-containing organic compound-contaminated soil. However, there have been few biological characterizations of Variovorax and their contaminant-degrading enzymes. Previously, we reported a new soil isolate, Variovorax boronicumulans CGMCC 4969, and its nitrile hydratase that transforms the neonicotinoid insecticide thiacloprid into an amide metabolite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!