The brain's functional connectivity fluctuates over time instead of remaining steady in a stationary mode even during the resting state. This fluctuation establishes the dynamical functional connectivity that transitions in a non-random order between multiple modes. Yet it remains unexplored how the transition facilitates the entire brain network as a dynamical system and what utility this mechanism for dynamic reconfiguration can bring over the widely used graph theoretical measurements. To address these questions, we propose to conduct an energetic analysis of functional brain networks using resting-state fMRI and behavioral measurements from the Human Connectome Project. Through comparing the state transition energy under distinct adjacent matrices, we justify that dynamic functional connectivity leads to 60% less energy cost to support the resting state dynamics than static connectivity when driving the transition through default mode network. Moreover, we demonstrate that combining graph theoretical measurements and our energy-based control measurements as the feature vector can provide complementary prediction power for the behavioral scores (Combination vs. Control: t = 9.41, p = 1.64e-13; Combination vs. Graph: t = 4.92, p = 3.81e-6). Our approach integrates statistical inference and dynamical system inspection towards understanding brain networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8975837PMC
http://dx.doi.org/10.1038/s42003-022-03196-0DOI Listing

Publication Analysis

Top Keywords

functional connectivity
16
dynamic reconfiguration
8
resting state
8
dynamical system
8
graph theoretical
8
theoretical measurements
8
brain networks
8
functional
5
connectivity
5
control theory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!