Ongoing ocean acidification is expected to affect marine organisms and ecosystems. While sea urchins can tolerate a wide range of pH, this comes at a high energetic cost, and early life stages are particularly vulnerable. Information on how ocean acidification affects transitions between life-history stages is scarce. We evaluated the direct and indirect effects of pH (pH 8.0, 7.6 and 7.2) on the development and transition between life-history stages of the sea urchin Strongylocentrotus droebachiensis, from fertilization to early juvenile. Continuous exposure to low pH negatively affected larval mortality and growth. At pH 7.2, formation of the rudiment (the primordial juvenile) was delayed by two days. Larvae raised at pH 8.0 and transferred to 7.2 after competency had mortality rates five to six times lower than those kept at 8.0, indicating that pH also has a direct effect on older, competent larvae. Latent effects were visible on the larvae raised at pH 7.6: they were more successful in settling (45% at day 40 post-fertilization) and metamorphosing (30%) than larvae raised at 8.0 (17 and 1% respectively). These direct and indirect effects of ocean acidification on settlement and metamorphosis have important implications for population survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976010 | PMC |
http://dx.doi.org/10.1038/s41598-022-09537-7 | DOI Listing |
Fish Shellfish Immunol
January 2025
International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China. Electronic address:
Ocean acidification and warming are significant stressors impacting marine ecosystems, exerting profound effects on the physiological ecology of marine organisms. We investigated the impact of ocean acidification and warming on the immune system of mussels, focusing on the regulatory mechanisms of intrinsic and extrinsic apoptosis. The study explored the effects on the immune response ability of mussels (Mytilus coruscus) after 14 and 21 days under combined conditions of different temperatures (20 °C and 30 °C) and pH (8.
View Article and Find Full Text PDFMar Environ Res
January 2025
Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China. Electronic address:
In order to explore the impact of CO-driven ocean acidification (OA) on gene expression of sea urchins, gametes of Hemicentrotus pulcherrimus were fertilized and developed to the four-armed larvae in either seawater at current pH levels (pH = 7.98) or in three laboratory-controlled OA conditions (ΔpH = -0.3, -0.
View Article and Find Full Text PDFMol Ecol
January 2025
Marine and Environmental Biology, University of Southern California, Los Angeles, California, USA.
Anthropogenic carbon dioxide emissions have been increasing rapidly in recent years, driving pH and oxygen levels to record low concentrations in the oceans. Eastern boundary upwelling systems such as the California Current System (CCS) experience exacerbated ocean acidification and hypoxia (OAH) due to the physical and chemical properties of the transported deeper waters. Research efforts have significantly increased in recent years to investigate the deleterious effects of climate change on marine species, but have not focused on the impacts of simultaneous OAH stressor exposure.
View Article and Find Full Text PDFMar Environ Res
January 2025
Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China.
This study examines the seasonal variations in carbonate system parameters in the East China Sea (ECS) off the Yangtze River estuary (YRE) and analyzes the contributions of anthropogenic CO₂ and eutrophication to acidification. Carbonate parameters data were collected during summer 2019 and combined winter 2011. During winter, acidification is primarily driven by rising atmospheric CO₂, with minimal impact from biological processes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Botany, Smithsonian Institution, National Museum of Natural History, Washington, DC, 20013, USA.
The Gulf of Maine holds significant ecological and economic value for fisheries and communities in north-eastern North America. However, there is apprehension regarding its vulnerability to the effects of increasing atmospheric CO. Substantial recent warming and the inflow of low alkalinity waters into the Gulf of Maine have raised concerns about the impact of ocean acidification on resident marine calcifiers (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!