Fundamental understanding of the dynamic behaviors at the electrochemical interface is crucial for electrocatalyst design and optimization. Here, we revisit the oxygen reduction reaction mechanism on a series of transition metal (M = Fe, Co, Ni, Cu) single atom sites embedded in N-doped nanocarbon by ab initio molecular dynamics simulations with explicit solvation. We have identified the dissociative pathways and the thereby emerged solvated hydroxide species for all the proton-coupled electron transfer (PCET) steps at the electrochemical interface. Such hydroxide species can be dynamically confined in a "pseudo-adsorption" state at a few water layers away from the active site and respond to the redox event at the catalytic center in a coupled manner within timescale less than 1 ps. In the PCET steps, the proton species (in form of hydronium in neutral/acidic media or water in alkaline medium) can protonate the pseudo-adsorbed hydroxide without needing to travel to the direct catalyst surface. This, therefore, expands the reactive region beyond the direct catalyst surface, boosting the reaction kinetics via alleviating mass transfer limits. Our work implies that in catalysis the reaction species may not necessarily bind to the catalyst surface but be confined in an active region.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8975818 | PMC |
http://dx.doi.org/10.1038/s41467-022-29357-7 | DOI Listing |
Small
January 2025
National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.
Electrochemical CO reduction (CORR) in membrane electrode assembly (MEA) represents a viable strategy for converting CO into value-added multi-carbon (C) compounds. Therefore, the microstructure of the catalyst layer (CL) affects local gas transport, charge conduction, and proton supply at three-phase interfaces, which is significantly determined by the solvent environment. However, the microenvironment of the CLs and the mechanism of the solvent effect on C selectivity remains elusive.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
In traditional atom transfer radical polymerization (ATRP), oxygen must be meticulously eliminated due to its propensity to quench radical species and halt the polymerization process. Additionally, oxygen oxidizes the lower-valent Cu catalyst, compromising its ability to activate alkyl halides and propagate polymerization. In this study, we present an oxygen-driven ATRP utilizing alkylborane compounds, a method that not only circumvents the need for stringent oxygen removal but also exploits oxygen as an essential cofactor to promote polymerization.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Shanxi Coal International Energy Group Co., Ltd., Taiyuan 030000, China.
Photocatalytic reduction of CO will play a major role in future energy and environmental crisis. To investigate the adsorption mechanisms of CO and HO molecules involved in the catalytic process on the surface of anatase titanium dioxide 101 (TiO(101)) and the influence of Au atom doping on their adsorption, first-principles density functional theory calculations were used. The results show that 1.
View Article and Find Full Text PDFACS Appl Polym Mater
January 2025
Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K.
Heterogeneous catalysis is significantly enhanced by the use of highly porous polymers with specific functionalities, such as basic groups, which accelerate reaction rates. Polymers of intrinsic microporosity (PIMs) provide a unique platform for catalytic reactions owing to their high surface areas and customizable pore structures. We herein report a series of Tröger's base polymers (TB-PIMs) with enhanced basicity, achieved through the incorporation of nitrogen-containing groups into their repeat units, such as triazine and triphenylamine.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry, Government First Grade College Chamarajanagar (Affiliated to Chamarajanagar University), Chamarajanagar, Karnataka, India.
Metal-Organic Frameworks (MOFs) gaining increasing interest in heterogeneous catalysis owing to their advantageous properties such as superior porosity, high surface area, ample catalytic sites. Their properties can be tailored by varying the metal ions or metal clusters (nodes) and organic linkers. Magnetically active nano core-shell MOF composites are also discovered for easy separation and reuse of catalyst.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!