The cyclic five-membered disulfide 1,2-dithiolane has been widely used in chemical biology and in redox probes. Contradictory reports have described it either as nonspecifically reduced in cells, or else as a highly specific substrate for thioredoxin reductase (TrxR). Here we show that 1,2-dithiolane probes, such as "TRFS" probes, are nonspecifically reduced by thiol reductants and redox-active proteins, and their cellular performance is barely affected by TrxR inhibition or knockout. Therefore, results of cellular imaging or inhibitor screening using 1,2-dithiolanes should not be interpreted as reflecting TrxR activity, and previous studies may need re-evaluation. To understand 1,2-dithiolanes' complex behaviour, probe localisation, environment-dependent fluorescence, reduction-independent ring-opening polymerisation, and thiol-dependent cellular uptake must all be considered; particular caution is needed when co-applying thiophilic inhibitors. We present a general approach controlling against assay misinterpretation with reducible probes, to ensure future TrxR-targeted designs are robustly evaluated for selectivity, and to better orient future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8975869 | PMC |
http://dx.doi.org/10.1038/s41467-022-29136-4 | DOI Listing |
Eur J Med Chem
January 2025
Laboratory of Medicinal Chemical Biology, Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Suzhou Medical College, Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China. Electronic address:
Pleurotin (1) is a benzoquinone meroterpenoid known for its wide-spectrum antitumor and antibiotic activities, notably acting as natural inhibitors of the thioredoxin reductase (TrxR). Pleurotin (1) has been chemically synthesized, but only in milligram quantities through at least 13 longest linear steps with 0.8 % overall yield due to its complex structure such as fused hexacyclic core with 8 contiguous stereocenters.
View Article and Find Full Text PDFNat Plants
January 2025
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
Hydrogen peroxide (HO) functions as a critical signalling molecule in controlling multiple biological processes. How HO signalling integrates with other regulatory pathways such as epigenetic modification to coordinately regulate plant development remains elusive. Here we report that SlALKBH2, an mA demethylase required for normal ripening of tomato fruit, is sensitive to oxidative modification by HO, which leads to the formation of homodimers mediated by intermolecular disulfide bonds, and Cys39 serves as a key site in this process.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico.
Infective endocarditis (IE) most commonly results from infections by Gram-positive bacteria, and, in this condition, the redox homeostasis is lost due to the overproduction of HO, leading to the overstimulation of the immune system and the upregulation of the production of proinflammatory cytokines. The aim of this study was to evaluate the levels of oxidative biomarkers and the enzymatic and non-enzymatic antioxidant systems in subjects with IE. The study included three cases with IE that had undergone aortic valve replacement (AVR) surgery that was complicated by IE, comparing them with subjects with AVR without IE.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia.
Bee products are an important source of nutrients and bioactive phytochemicals. This study aimed to determine the chemical composition (proximate composition, general phytochemical composition, sugar, and phenolic profiles) of four different products (honey, bee pollen, bee bread, and propolis), obtained from the same apiary, as well as to assess their biological activity through antioxidant and enzyme inhibition assays (α-amylase, α-glucosidase, lipase, AchE, neuraminidase, angiotensin-converting enzyme, urease, trypsin, tyrosinase, carbonic anhydrase, thioredoxin reductase, adenosine deaminase). Clear differences were observed among the samples in terms of both chemical composition and biological activity.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
is a low-molecular weight, non-aromatic reagent, widely used in industry, such as in the manufacture of paper, textiles, plastics, cosmetics, and dyes. ACR is formed during the cooking of starchy food and its toxicity results mainly by conferring oxidative stress by elevating reactive oxygen species (ROS). To identify potential antidotes for ACR toxicity, we evaluated the efficacy of several thiol-based molecules known for ROS-scavenging, disulfide-reducing properties, and inhibition of oxidative stress-induced activation of the mitogen-activated protein kinases (MAPKs): the extracellular-signal-regulated-kinases (ERK1/2), p38-mitogen-activated-protein-kinases (p38), and c-Jun-N-terminal-kinases (JNKs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!