To obtain more information about incident particles, a new method for measuring three-dimensional track profiles formed on CR-39s based on the photometric stereo method was developed. A new optical microscope system with 16 lasers and a complementary metal-oxide-semiconductor camera was built to automatically capture the reflecting track images illuminated by the laser beams from different angles, and the track profiles were three-dimensionally reconstructed using a self-developed software. To verify the reconstruction results of the track profiles, both the openings and depth were measured with an atomic force microscope. The results showed that the relative deviations between the two methods of the openings were about 5.5% and the deviations of the depth were about 8.0%. At present, the reconstruction speed of a three-dimensional track profile is a factor of 400 greater than that of the atomic force microscope. The new method shows great potential for rapid reconstruction of numerous track morphologies. It is expected to be helpful for further studies on the energy and angle discrimination of incident particles in the field of nuclear measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0062398 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!