Robotized polarization characterization platform for free-space quantum communication optics.

Rev Sci Instrum

Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

Published: March 2022

We develop a polarization characterization platform for optical devices in free-space quantum communications. We demonstrate an imaging polarimeter, which analyzes both incident polarization states and the angle of incidence, attached to a six-axis collaborative robot arm, enabling polarization characterization at any position and direction with consistent precision. We present a detailed description of each subsystem, including the calibration and polarization-test procedure, and analyze polarization measurement errors caused by imperfect orientations of the robot arm using a Mueller-matrix model of polarimeters at tilt incidence. We perform a proof-of-principle experiment for an angle-dependent polarization test for a commercial silver-coated mirror for which the polarization states of the reflected light can be accurately calculated. Quantitative agreement between the theory and experiment validates our methodology. We demonstrate the polarization test for a 20.3 cm lens designed for a quantum optical transmitter in Canada's Quantum Encryption and Science Satellite mission.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0070176DOI Listing

Publication Analysis

Top Keywords

polarization characterization
12
characterization platform
8
free-space quantum
8
polarization states
8
robot arm
8
polarization test
8
polarization
7
robotized polarization
4
platform free-space
4
quantum
4

Similar Publications

Mitochondria play critical roles in regulating cell fate, with dysfunction correlating with the development of multiple diseases, emphasizing the need for engineered nanomedicines that cross biological barriers. Said nanomedicines often target fluctuating mitochondrial properties and/or present inefficient/insufficient cytosolic delivery (resulting in poor overall activity), while many require complex synthetic procedures involving targeting residues (hindering clinical translation). The synthesis/characterization of polypeptide-based cell penetrating diblock copolymers of poly-L-ornithine (PLO) and polyproline (PLP) (PLO-PLP, n:m ratio 1:3) are described as mitochondria-targeting nanocarriers.

View Article and Find Full Text PDF

In an era of escalating environmental challenges, converting organic residues into high-value bioactive compounds provides a sustainable way to reduce waste and enhance resource efficiency. This study explores the potential of the circular bioeconomy through the valorization of agricultural byproducts, with a focus on the antioxidant properties of specific chestnut burr cultivars. Currently, over one-third of food production is wasted, contributing to both humanitarian and environmental crises.

View Article and Find Full Text PDF

A Low-Modulus Phosphatidylserine-Exposing Microvesicle Alleviates Skin Inflammation via Persistent Blockade of M1 Macrophage Polarization.

Int J Mol Sci

January 2025

Department of Material Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.

Inflammatory skin diseases comprise a group of skin conditions characterized by damage to skin function due to overactive immune responses. These disorders not only impair the barrier function of the skin but also deteriorate the quality of life and increase the risk of psychiatric issues. Here, a low-modulus phosphatidylserine-exposing microvesicle (deformed PSV, D-PSV) was produced, characterized, and evaluated for its potential therapeutic function against skin diseases.

View Article and Find Full Text PDF

Inflammation significantly influences cellular communication in the oral environment, impacting tissue repair and regeneration. This study explores the role of small extracellular vesicles (sEVs) derived from lipopolysaccharide (LPS)-treated stem cells from the apical papilla (SCAP) in modulating macrophage polarization and osteoblast differentiation. SCAPs were treated with LPS for 24 h, and sEVs from untreated (SCAP-sEVs) and LPS-treated SCAP (LPS-SCAP-sEVs) were isolated via ultracentrifugation and characterized using transmission electron microscopy, Western blot, and Tunable Resistive Pulse Sensing.

View Article and Find Full Text PDF

Exploring the Binding Mechanism of ADGRG2 Through Metadynamics and Biochemical Analysis.

Int J Mol Sci

December 2024

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.

G protein-coupled receptors (GPCRs) play essential roles in numerous physiological processes and are key targets for drug development. Among them, adhesion GPCRs (aGPCRs) stand out for their unique domain structures and diverse functions. ADGRG2 is a member of the aGPCR family and is involved in the regulation of various systems in the human body, including reproductive, nervous, cardiovascular, and endocrine systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!