Contralateral noise inhibits the amplitudes of cochlear and neural responses. These measures may hold potential diagnostic utility. The medial olivocochlear (MOC) reflex underlies the inhibition of cochlear responses but the extent to which it contributes to inhibition of neural responses remains unclear. Mertes and Leek [J. Acoust. Soc. Am. 140, 2027-2038 (2016)] recently examined contralateral inhibition of cochlear responses [transient-evoked otoacoustic emissions (TEOAEs)] and neural responses [auditory steady-state responses (ASSRs)] in humans and found that the two measures were not correlated, but potential confounds of older age and hearing loss were present. The current study controlled for these confounds by examining a group of young, normal-hearing adults. Additionally, measurements of the auditory brainstem response (ABR) were obtained. Responses were elicited using clicks with and without contralateral broadband noise. Changes in TEOAE and ASSR magnitude as well as ABR wave V latency were examined. Results indicated that contralateral inhibition of ASSRs was significantly larger than that of TEOAEs and that the two measures were uncorrelated. Additionally, there was no significant change in wave V latency. Results suggest that further work is needed to understand the mechanism underlying contralateral inhibition of the ASSR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0009910 | DOI Listing |
Elife
January 2025
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
The claustrum complex is viewed as fundamental for higher-order cognition; however, the circuit organization and function of its neuroanatomical subregions are not well understood. We demonstrated that some of the key roles of the CLA complex can be attributed to the connectivity and function of a small group of neurons in its ventral subregion, the endopiriform (EN). We identified a subpopulation of EN neurons by their projection to the ventral CA1 (EN.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
In contrast to blood-oxygenation level-dependent (BOLD) functional MRI (fMRI), which relies on changes in blood flow and oxygenation levels to infer brain activity, diffusion fMRI (DfMRI) investigates brain dynamics by monitoring alterations in the apparent diffusion coefficient (ADC) of water. These ADC changes may arise from fluctuations in neuronal morphology, providing a distinctive perspective on neural activity. The potential of ADC as an fMRI contrast (ADC-fMRI) lies in its capacity to reveal neural activity independently of neurovascular coupling, thus yielding complementary insights into brain function.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
Precision, or personalized, medicine aims to stratify patients based on variable pathogenic signatures to optimize the effectiveness of disease prevention and treatment. This approach is favorable in the context of brain disorders, which are often heterogeneous in their pathophysiological features, patterns of disease progression and treatment response, resulting in limited therapeutic standard-of-care. Here we highlight the transformative role that human induced pluripotent stem cell (hiPSC)-derived neural models are poised to play in advancing precision medicine for brain disorders, particularly emerging innovations that improve the relevance of hiPSC models to human physiology.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy.
For over a century after their discovery astrocytes were regarded merely as cells located among other brain cells to hold and give support to neurons. Astrocytes activation, "astrocytosis" or A1 functional state, was considered a detrimental mechanism against neuronal survival. Recently, the scientific view on astrocytes has changed.
View Article and Find Full Text PDFFront Neurol
January 2025
Institution of Traditional Chinese Medicine Innovation Research, Shandong University of Traditional Chinese Medicine, Jinan, China.
Background: In nature, animals must learn to recognize danger signals and respond immediately to threats to improve their environmental adaptation. However, excessive fear responses can lead to diseases such as post-traumatic stress disorder, wherein traumatic events result in persistent traumatic memories. Therefore, erasing pathological fear memories is a crucial topic in neuroscience for understanding the nature of memories and treating clinically relevant diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!