The exponential sine sweep is a commonly used excitation signal in acoustic measurements, which, however, is susceptible to non-stationary noise. This paper shows how to detect contaminated sweep signals and select clean ones based on a procedure called the rule of two, which analyzes repeated sweep measurements. A high correlation between a pair of signals indicates that they are devoid of non-stationary noise. The detection threshold for the correlation is determined based on the energy of background noise and time variance. Not being disturbed by non-stationary events, a median-based method is suggested for reliable background noise energy estimation. The proposed method is shown to detect reliably 95% of impulsive noises and 75% of dropouts in the synthesized sweeps. Tested on a large set of measurements and compared with a previous method, the proposed method is shown to be more robust in detecting various non-stationary disturbances, improving the detection rate by 30 percentage points. The rule-of-two procedure increases the robustness of practical acoustic and audio measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0009915 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!