Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent studies have revealed the interplay between the structure of network circuits with fibration symmetries and the functionality of biological networks within which they have been identified. The presence of these symmetries in complex networks predicts the phenomenon of cluster synchronization, which produces patterns of a synchronized group of nodes. Here, we present a fast, and memory efficient, algorithm to identify fibration symmetries in networks. The algorithm is particularly suitable for large networks since it has a runtime of complexity O(MlogN) and requires O(M+N) of memory resources, where N and M are the number of nodes and edges in the network, respectively. The algorithm is a modification of the so-called refinement paradigm to identify circuits that are symmetrical to information flow (i.e., fibers) by finding the coarsest refinement partition over the network. Finally, we show that the algorithm provides an optimal procedure for identifying fibers, overcoming current approaches used in the literature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8933057 | PMC |
http://dx.doi.org/10.1063/5.0066741 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!