In this paper, we analyze the effect of optical feedback on the dynamics of a passively mode-locked ring laser operating in the regime of temporal localized structures. This laser system is modeled by a set of delay differential equations, which include delay terms associated with the laser cavity and the feedback loop. Using a combination of direct numerical simulations and path-continuation techniques, we show that the feedback loop creates echoes of the main pulse whose position and size strongly depend on the feedback parameters. We demonstrate that in the long-cavity regime, these echoes can successively replace the main pulses, which defines their lifetime. This pulse instability mechanism originates from a global bifurcation of the saddle-node infinite-period type. In addition, we show that, under the influence of noise, the stable pulses exhibit forms of a behavior characteristic of excitable systems. Furthermore, for the harmonic solutions consisting of multiple equispaced pulses per round-trip, we show that if the location of the pulses coincides with the echo of another, the range of stability of these solutions is increased. Finally, it is shown that around these resonances, branches of different solutions are connected by period-doubling bifurcations.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0075449DOI Listing

Publication Analysis

Top Keywords

feedback dynamics
8
temporal localized
8
localized structures
8
passively mode-locked
8
feedback loop
8
feedback
5
influence time-delayed
4
time-delayed feedback
4
dynamics temporal
4
structures passively
4

Similar Publications

O-GlcNAcylation is a post-translational modification characterized by the covalent attachment of a single moiety of GlcNAc on serine/threonine residues in proteins. Tyrosine hydroxylase (TH), the rate-limiting step enzyme in the catecholamine synthesis pathway and responsible for production of the dopamine precursor, L-DOPA, has its activity regulated by phosphorylation. Here, we show an inverse feedback mechanism between O-GlcNAcylation and phosphorylation of TH at serine 40 (TH pSer40).

View Article and Find Full Text PDF

We analyzed the thermal, structural, and dynamic properties of maghemite using classical molecular dynamics, focusing on bulk and nanoparticle systems. We explored their behavior when heated to high temperatures (above the melting point) and during cooling, as well as under thermal cycles ending at intermediate temperatures. Our findings show that in the bulk system, both the tetrahedral and octahedral iron sub-lattices undergo a phase transition prior to melting.

View Article and Find Full Text PDF

Background: A surgical robot with force feedback can guarantee precise and gentle manipulation for endometrial repair, ensuring the effectiveness and safety of the manipulation. However, the design of force sensors for surgical robots is challenging due to the limited anatomical space and the requirement for continuous rotation.

Methods: This paper presents a novel force-sensing surgical instrument for endometrial repair, including an inner scraping instrument and an outer force sensing sheath.

View Article and Find Full Text PDF

Gene syntax-the order and arrangement of genes and their regulatory elements-shapes the dynamic coordination of both natural and synthetic gene circuits. Transcription at one locus profoundly impacts the transcription of nearby adjacent genes, but the molecular basis of this effect remains poorly understood. Here, using integrated reporter circuits in human cells, we show that supercoiling-mediated feedback regulates expression of adjacent genes in a syntax-specific manner.

View Article and Find Full Text PDF

Temperature seasonality regulates organic carbon burial in lake.

Nat Commun

January 2025

Laboratoire des Sciences du Climat et de l' Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France.

Organic carbon burial (OCB) in lakes, a critical component of the global carbon cycle, surpasses that in oceans, yet its response to global warming and associated feedbacks remains poorly understood. Using a well-dated biomarker sequence from the southern Tibetan Plateau and a comprehensive analysis of Holocene total organic carbon variations in lakes across the region, here we demonstrate that lake OCB significantly declined throughout the Holocene, closely linked to changes in temperature seasonality. Process-based land surface model simulations clarified the key impact of temperature seasonality on OCB in lakes: increased seasonality in the early Holocene saw warmer summers enhancing ecosystem productivity and organic matter deposition, while cooler winters improved organic matter preservation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!