We extend a recent classical mechanical analog of Bohr's atom consisting of a scalar field coupled to a massive point-like particle [P. Jamet and A. Drezet, "A mechanical analog of Bohr's atom based on de Broglie's double-solution approach," Chaos 31, 103120 (2021)] by adding and studying the contribution of a uniform weak magnetic field on their dynamics. In doing so, we are able to recover the splitting of the energy levels of the atom called Zeeman's effect within the constraints of our model and in agreement with the semiclassical theory of Sommerfeld. This result is obtained using Larmor's theorem for both the field and the particle, associating magnetic effects with inertial Coriolis forces in a rotating frame of reference. Our work, based on the old "double solution" theory of de Broglie, shows that a dualistic model involving a particle guided by a scalar field can reproduce the normal Zeeman effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0081254 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Chemistry, Kohsar University Murree, Murree, 47150, Punjab, Pakistan.
Antibiotics and pharmaceuticals exert significant environmental risks to aquatic ecosystems and human health. Many effective remedies to this problem have been developed through research. Metal-organic frameworks (MOFs) are potential constituents, for drug and antibiotic removal.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0041, United States.
Accurately calculating the diradical character () of molecular systems remains a significant challenge due to the scarcity of experimental data and the inherent multireference nature of the electronic structure. In this study, various quantum mechanical approaches, including broken symmetry density functional theory (BS-DFT), spin-flip time-dependent density functional theory (SF-TDDFT), mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT), complete active space self-consistent field (CASSCF), complete active space second-order perturbation theory (CASPT2), and multiconfigurational pair-density functional theory (MCPDFT), are employed to compute the singlet-triplet energy gaps () and values in Thiele, Chichibabin, and Müller analogous diradicals. By systematically comparing the results from these computational methods, we identify optimally tuned long-range corrected functional CAM-B3LYP in the BS-DFT framework as a most efficient method for accurately and affordably predicting both and values.
View Article and Find Full Text PDFFront Surg
January 2025
Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.
Objective: To compare the efficacy of three treatment methods for older adult patients with osteoporotic proximal humerus fractures: proximal humerus locking plate (PHILOS) combined with calcium sulfate injection, PHILOS plate alone, and artificial hemi-shoulder joint replacement.
Methods: The clinical data of 48 older adult patients with osteoporotic proximal humerus fractures admitted to the Shoulder and Elbow Surgery Department of Zhongshan Hospital Affiliated with Dalian University from February 2018-August 2021 were retrospectively analyzed. The patients comprised 18 males and 30 females, with a mean age of (68.
J Orthop Surg Res
January 2025
Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), University of Aveiro, Aveiro, 3810-193, Portugal.
Background: Bone fractures represent a global public health issue. Over the past few decades, a sustained increase in the number of incidents and prevalent cases have been reported, as well as in the years lived with disability. Current monitoring techniques predominantly rely on imaging methods, which can result in subjective assessments, and expose patients to unnecessary cumulative doses of radiation.
View Article and Find Full Text PDFJ Cardiothorac Vasc Anesth
January 2025
Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA.
Vasoplegia is a pathophysiologic state of hypotension in the setting of normal or high cardiac output and low systemic vascular resistance despite euvolemia and high-dose vasoconstrictors. Vasoplegia in heart, lung, or liver transplantation is of particular interest because it is common (approximately 29%, 28%, and 11%, respectively), is associated with adverse outcomes, and because the agents used to treat vasoplegia can affect immunosuppressive and other drug metabolism. This narrative review discusses the pathophysiology, risk factors, and treatment of vasoplegia in patients undergoing heart, lung, and liver transplantation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!