In this study, Curcubita maxima leaves are used as a novel source for green synthesis of reduced graphene oxide - silver nanoparticle composite in a single pot. Characterization of the novel phyto source-driven composite was performed by UV-visible spectroscopy, Fourier transform infrared analysis, X-ray diffraction analysis, and field emission scanning electron microscopic methods. The assessment of degradation effect of chlorpyrifos by the synthesized nanocomposite was performed. The photocatalytic activity of the composite was demonstrated through two different processes as adsorption under room temperature and photocatalysis in the presence of sunlight. Different parameters such as pH, time, photocatalyst dose and pesticide concentration were optimized. The adsorption isotherms governing the photocatalytic adsorption process were investigated to predict the adsorption capacity of the synthesized nanocomposite. In addition, the results of antimicrobial activity of the nanocomposite against gram-positive, gram-negative bacteria and antifungal activity were also been found to be highly promising to utilize this composite for the removal of microbial contaminations in wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-19917-1DOI Listing

Publication Analysis

Top Keywords

green synthesis
8
curcubita maxima
8
synthesized nanocomposite
8
composite
5
synthesis rgo-agnp
4
rgo-agnp composite
4
composite curcubita
4
maxima extract
4
extract enhanced
4
enhanced photocatalytic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!