A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A MXene-based multiple catalyst for highly efficient photocatalytic removal of nitrate. | LitMetric

A MXene-based multiple catalyst for highly efficient photocatalytic removal of nitrate.

Environ Sci Pollut Res Int

School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing, 211189, People's Republic of China.

Published: August 2022

Photocatalytic removal of nitrate in wastewater has attracted wide attention because of its simple operation and environmental protection. However, the preparation of photocatalysts with high efficiency and high nitrogen selectivity is still a challenge. In this paper, TiO is grown in situ on TiC MXene by a simple calcination method and modified with silver particles. The presence of TiC reduces the recombination rate of photogenerated electrons and generates more photogenerated electrons. At the same time, the silver particles also increase the photoelectron density and further improve the carrier separation of the catalyst. Due to its unique structure and optical properties, the prepared photocatalyst shows an excellent nitrate removal rate under a high-pressure mercury lamp. At 500 mg/L, the nitrate removal rate reaches 96.1%, and the nitrogen selectivity reaches 92.6%. Even after 5 cycles, the prepared photocatalyst still maintains a high nitrate photocatalytic removal efficiency (89%). The electron transfer path is verified by density functional theory calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-19616-xDOI Listing

Publication Analysis

Top Keywords

photocatalytic removal
12
removal nitrate
8
nitrate photocatalytic
8
nitrogen selectivity
8
silver particles
8
photogenerated electrons
8
prepared photocatalyst
8
nitrate removal
8
removal rate
8
removal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!