Purpose: To develop a new lipid-based particle formulation platform for respiratory drug delivery applications. To find processing conditions for high surface rugosity and manufacturability. To assess the applicability of the new formulation method to different lipids.
Methods: A new spray drying method with a simplified aqueous suspension feedstock preparation process was developed for the manufacture of rugose lipid particles of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). A study covering a wide range of feedstock temperatures and outlet temperatures was conducted to optimize the processing conditions. Aerosol performance was characterized in vitro and in silico to assess the feasibility of their use in respiratory drug delivery applications. The applicability of the new spray drying method to longer-chain phospholipids with adjusted spray drying temperatures was also evaluated.
Results: Highly rugose DSPC lipid particles were produced via spray drying with good manufacturability. A feedstock temperature close to, and an outlet temperature lower than, the main phase transition were identified as critical in producing particles with highly rugose surface features. High emitted dose and total lung dose showed promising aerosol performance of the produced particles for use as a drug loading platform for respiratory drug delivery. Two types of longer-chain lipid particles with higher main phase transition temperatures, 1,2-diarachidoyl-sn-glycero-3-phosphocholine (DAPC) and 1,2-dibehenoyl-sn-glycero-3-phosphocholine (22:0 PC), yielded similar rugose morphologies when spray dried at correspondingly higher processing temperatures.
Conclusions: Rugose lipid particles produced via spray drying from an aqueous suspension feedstock are promising as a formulation platform for respiratory drug delivery applications. The new technique can potentially produce rugose particles using various other lipids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11095-022-03242-w | DOI Listing |
Inflamm Res
January 2025
Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
Background: Allergic rhinitis (AR) represents a persistent inflammatory condition affecting the upper respiratory tract, characterized by abnormal initiation of the immunoglobulin E (IgE)-mediated cascade. Follicular helper T (Tfh) cells and regulatory T (Tfr) cells are pivotal in orchestrating the development of IgE production in AR patients. IL-35, an anti-inflammatory cytokine, secreted by various cellular subpopulations.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia.
Background: Most older patients with atrial fibrillation (AF) have comorbidities. However, it is unclear whether specific comorbidity patterns are associated with adverse outcomes. We identified comorbidity patterns and their association with mortality in multimorbid older AF patients with different multidimensional frailty.
View Article and Find Full Text PDFJ Coll Physicians Surg Pak
January 2025
Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
Sweet syndrome, also known as acute febrile neutrophilic dermatosis, is a rare condition characterised by fever, leucocytosis, and painful skin lesions. This retrospective study analysed 21 patients with Sweet syndrome treated at the Affiliated Hospital of Xuzhou Medical University from January 2015 to June 2022. The study aimed to investigate the aetiology, clinicopathological features, and treatment outcomes.
View Article and Find Full Text PDFJ Coll Physicians Surg Pak
January 2025
Department of Pathology, National Institute of Cardiovascular Diseases, Karachi, Pakistan.
Objective: To determine the frequency of multidrug-resistant (MDR) bacterial isolates in respiratory specimens obtained from ventilated patients admitted to critical care units at the National Institute of Cardiovascular Diseases (NICVD), along with COVID-19-positive cases.
Study Design: An observational study. Place and Duration of the Study: National Institute of Cardiovascular Diseases, between November 2021 and March 2022.
Adv Exp Med Biol
January 2025
Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.
Despite advances in healthcare, bacterial pathogens remain a severe global health threat, exacerbated by rising antibiotic resistance. Lower respiratory tract infections, with their high death toll, are of particular concern. Accurately replicating host-pathogen interactions in laboratory models is crucial for understanding these diseases and evaluating new therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!