Biosensors have attracted a great deal of attention, as they allow for the translation of the standard laboratory-based methods into small, portable devices. The field of biosensors has been growing, introducing innovations into their design to improve their sensing characteristics and reduce sample volume and user intervention. Enzymes are commonly used for determination purposes providing a high selectivity and sensitivity; however, their poor shelf-life is a limiting factor. Researchers have been studying the possibility of substituting enzymes with other materials with an enzyme-like activity and improved long-term stability and suitability for point-of-care biosensors. Extra attention is paid to metal and metal oxide nanoparticles, which are essential components of numerous enzyme-less catalytic sensors. The bottleneck of utilising metal-containing nanoparticles in sensing devices is achieving high selectivity and sensitivity. This review demonstrates similarities and differences between numerous metal nanoparticle-based sensors described in the literature to pinpoint the crucial factors determining their catalytic performance. Unlike other reviews, sensors are categorised by the type of metal to study their catalytic activity dependency on the environmental conditions. The results are based on studies on nanoparticle properties to narrow the gap between fundamental and applied research. The analysis shows that the catalytic activity of nanozymes is strongly dependent on their intrinsic properties (e.g. composition, size, shape) and external conditions (e.g. pH, type of electrolyte, and its chemical composition). Understanding the mechanisms behind the metal catalytic activity and how it can be improved helps designing a nanozyme-based sensor with the performance matching those of an enzyme-based device.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8975783 | PMC |
http://dx.doi.org/10.1007/s00604-022-05252-2 | DOI Listing |
Nat Commun
January 2025
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
Designing efficient Ruthenium-based catalysts as practical anodes is of critical importance in proton exchange membrane water electrolysis. Here, we develop a self-assembly technique to synthesize 1 nm-thick rutile-structured high-entropy oxides (RuIrFeCoCrO) from naked metal ions assembly and oxidation at air-molten salt interface. The RuIrFeCoCrO requires an overpotential of 185 mV at 10 m A cm and maintains the high activity for over 1000 h in an acidic electrolyte via the adsorption evolution mechanism.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China. Electronic address:
Catalytic depolymerization is a favorable option for the valorization of industrial lignin. In this study, a new strategy was demonstrated for the efficient reductive depolymerization of industrial lignin based on a complex solvent of choline chloride-lactic acid (ChCl-LA) DES integrated with ethanol and a C-supported N-doped niobium-based catalyst with industrial lignin as carbon source (NBC@N-LC). It was found that the introduction of ethanol significantly improved the conversion of industrial lignin in ChCl-LA.
View Article and Find Full Text PDFBioresour Technol
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan 430062, PR China. Electronic address:
As an important industrial enzyme, chymosin has been widely used in cheese manufacturing. Fermentation with Kluyveromyces lactis has allowed recombinant chymosin production to fit the growing global demand for cheese consumption; yet improvements can be made to allow for stable and larger-scale production. In this work, various chymosin producing (CP) strains were constructed via targeted chromosomal integration of various copies of a prochymosin expression cassette (PEC) using a CRISPR-Cas9 platform optimized for K.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany. Electronic address:
Mitochondria derive the majority of their lipids from other organelles through contact sites. These lipids, primarily phosphoglycerolipids, are the main components of mitochondrial membranes. In the cell, neutral lipids like triacylglycerides (TAGs) are stored in lipid droplets, playing an important role in maintaining cellular health.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, China.
The efficient degradation of SAs is a significant challenge for the treatment of wastewater. To address this, the FeS@BC was prepared by calcining a mixture of pyrite and biomass, and used to activate peroxydisulfate (PDS) to degrade sulfadiazine (SDZ). The effect of carbon sources (wheat straw, rice husk, and corn cob) on catalytic activity of FeS@BC were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), total Fe dissolution and free radical quantification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!