We previously showed that some (nonsubstituted) aziridines derived from polycyclic aromatic hydrocarbons (arene imines) elicit various mutagenic and genotoxic effects in bacteria and mammalian cells and that these arene imines are active at much lower concentrations than the corresponding epoxide analogues. In the present study, N-substituted derivatives of phenanthrene 9,10-imine were investigated. All 10 derivatives studied showed direct mutagenicity in Salmonella typhimurium TA100. Some of the compounds additionally exhibited weak effects in the strains TA98 and TA1537. Most N-substituted derivatives were weaker mutagens than unsubstituted phenanthrene 9,10-imine but stronger mutagens than phenanthrene 9,10-oxide. Bulky substituents reduced the mutagenicity more than did small substituents. In addition, the derivatives with electron-withdrawing substituents (with the exception of N-chlorophenanthrene 9,10-imine) were weaker mutagens than those with electron-donating substituents. Phenanthrene 9,10-imine and five N-substituted derivatives were investigated to determine whether they induce gene mutations at the hgprt locus in V79 cells. Four compounds, including the parent aziridine, were positive in the V79 test. The other two compounds were negative. The mutagenic potencies in the V79 cell system did not correlate well with those obtained with the Salmonella system. Overall, the study shows that in addition to unsubstituted arene imines, N-substituted derivatives are mutagenic. This finding is of interest, as metabolic pathways leading from aromatic compounds to N-substituted arene imines are conceivable.

Download full-text PDF

Source
http://dx.doi.org/10.1002/em.2860080606DOI Listing

Publication Analysis

Top Keywords

arene imines
16
n-substituted derivatives
16
phenanthrene 910-imine
12
salmonella typhimurium
8
v79 cells
8
weaker mutagens
8
derivatives
6
phenanthrene
5
n-substituted
5
mutagenicity n-substituted
4

Similar Publications

The substitution of an aromatic ring with a C(sp)-rich bicyclic hydrocarbon, known as bioisosteric replacement, plays a crucial role in modern drug discovery. Substituted bicyclo[1.1.

View Article and Find Full Text PDF

In this work, we show two synthetic routes to substitute the N position of mesoionic imines (MIIs). By Buchwald-Hartwig amination, 5-amino-1,2,3-triazoles can be arylated at the said position, showing the versatility of amino-triazoles as building blocks for MIIs. The reaction of MIIs with electrophiles (MeI, fluoro-arenes) highlights the nucleophilic nature of MIIs as even at room temperature aromatic C-F bonds can be activated with MIIs.

View Article and Find Full Text PDF

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF

Enantioselective dearomative formal (3+3) cycloadditions of bicyclobutanes with aromatic azomethine imines: access to fused 2,3-diazabicyclo[3.1.1]heptanes.

Chem Sci

November 2024

State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China

Although cycloadditions of bicyclobutanes (BCBs) have emerged as a reliable approach for producing bicyclo[.1.1]alkanes such as azabicyclo[3.

View Article and Find Full Text PDF

Photoinduced Bartoli Indole Synthesis by the Oxidative Cleavage of Alkenes with Nitro(hetero)arenes.

Angew Chem Int Ed Engl

January 2025

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China.

Given the unique charm of dipole chemistry, intercepting N-O=C dipoles precisely generated by designed processes to develop novel reactivity has become a seminal challenge. The polar fragmentation of 1,3,2-dioxazolidine species generated through the radical addition of excited nitro(hetero)arenes to alkenes represents a significantly underappreciated mechanism for generating N-O=C dipoles. Herein, we present a photoinduced Bartoli indole synthesis by the oxidative cleavage of alkenes with nitro(hetero)arenes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!