Direct urea fuel cell (DUFC) and overall urea splitting system have attracted considerable attention as promising choice for energy conversion. Whereas, the anodic half reaction of electrocatalytic urea oxidation reaction (UOR) in these systems awfully limited their practical application due to the complex 6-electron transfer process. Herein, vanadium doped nickel (V-Ni(OH)) with highly efficient electrocatalytic activity toward UOR was developed by a simple coprecipitation method. The introducing of V not only promotes the phase transforming from inactive β-Ni(OH) to highly active α-Ni(OH), but also simultaneously modulates the electron environment of Ni, facilitating high valence species Ni generation in low overpotential, enhancing the electrocatalytic activity potent of each Ni site and speeding up the electrocatalytic reaction. The optimal V-Ni(OH) catalyst exhibits a summit current density of 241 mA cm at 1.6 V vs. RHE, a Tafel slope of 32.15 mV dec, outperforming β-Ni(OH) and most catalysts that tested on glassy carbon electrode. Furthermore, the assembled direct urea hydrogen peroxide fuel cell (DUPFC) offers a maximum power density of 13.4 mW cm at 20 °C. This work provides an example of combing phase-regulation and electron modulation method for effective UOR electrocatalysts design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.03.054 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!