Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With the development of wearable technologies, the interfacial properties of skin and devices have become much more important. For research and development purposes, porcine skin is often used to evaluate device performance, but the differences between in vivo, in situ and ex vivo porcine skin mechanical properties can potentially misdirect investigators during the development of their technology. In this study, we investigated the significant changes to mechanical properties with and without perfusion (in vivo versus in vitro tissue). The device focus for this study was a skin-targeting Nanopatch vaccine microneedle device, employed to assess the variance to key skin engagement parameters - penetration depth and delivery efficiency - due to different tissue conditions. The patches were coated with fluorescent or C radiolabelled formulations for penetration depth and delivery efficiency quantification in vivo, and at time points up to 4 h post mortem. An immediate cessation of blood circulation saw mean microneedle penetration depth fell from ∼100 μm to ∼55 μm (∼45%). Stiffening of underlying tissues as a result of rigor mortis then augmented the penetration depths at the 4 h timepoint back to ∼100 μm, insignificantly different (p = 0.0595) when compared with in vivo. The highest delivery efficiency of formulation into the skin (dose measured in the skin excluding leftover dose on skin and patch surfaces) was also observed at this time point of ∼25%, up from ∼2% in vivo. Data obtained herein progresses medical device development, highlighting the need to consider the state and muscle tissues when evaluating prototypes on cadavers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2022.105187 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!