Periodontitis is a chronic inflammatory disease caused by plaque that leads to alveolar bone resorption. In the treatment of periodontitis, it is necessary to reduce the bacterial load and promote alveolar bone regeneration. In this study, zeolitic imidazolate framework-8 (ZIF-8) is used in the treatment of periodontitis, and an injectable photopolymerizable ZIF-8/gelatin methacryloyl (GelMA) composite hydrogel (GelMA-Z) is constructed. We confirm that ZIF-8 nanoparticles are successfully loaded into GelMA, which demonstrates fluidity and photopolymerizability. GelMA-Z continuously releases Zn and shows good cytocompatibility. In vitro, GelMA-Z can effectively upregulate the expression of osteogenesis-related genes and proteins, increase alkaline phosphatase activity, promote extracellular matrix mineralization by rat bone mesenchymal stem cells, and exert an obvious antibacterial effect against Porphyromonas gingivalis. In vivo, GelMA-Z reduces the bacterial load, relieves inflammation and promotes alveolar bone regeneration in a rat model. The above results show that GelMA-Z has potential prospects in the treatment of periodontitis. STATEMENT OF SIGNIFICANCE: Various methods have been explored for the treatment of periodontitis. However, current regiments have difficulty achieving ideal alveolar bone regeneration. In this study, we constructed a zeolitic imidazolate framework-8 (ZIF-8)/gelatin methacryloyl (GelMA) composite hydrogel (GelMA-Z). (1) The injectable and photopolymerizable GelMA-Z showed biocompatibility in vitro and in vivo. (2) GelMA-Z continually released zinc ions to promote the osteogenic differentiation of bone mesenchymal stem cells and kill bacteria in vitro. (3) In a rat model, the GelMA-Z pregel solution was used to fill the periodontal pocket and then crosslinked by UV exposure. GelMA-Z can stably remain in the periodontal pocket to reduce the bacterial load, relieve inflammation and promote alveolar bone regeneration. In conclusion, GelMA-Z has great potential for use in the treatment of periodontitis, especially in promoting alveolar bone regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2022.03.046DOI Listing

Publication Analysis

Top Keywords

treatment periodontitis
24
alveolar bone
24
bone regeneration
20
injectable photopolymerizable
12
bacterial load
12
gelma-z
11
bone
8
reduce bacterial
8
promote alveolar
8
regeneration study
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!