Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Skin cancer has become a public health problem due to its increasing incidence. However, the malignancy risk of the lesions can be reduced if diagnosed at an early stage. To do so, it is essential to identify particular characteristics such as the symmetry of lesions. In this work, we present a novel approach for skin lesion symmetry classification of dermoscopic images based on deep learning techniques. We use a CNN model, which classifies the symmetry of a skin lesion as either "fully asymmetric", "symmetric with respect to one axis", or "symmetric with respect to two axes". Moreover, we introduce a new dataset of labels for 615 skin lesions. During the experimentation framework, we also evaluate whether it is beneficial to rely on transfer learning from pre-trained CNNs or traditional learning-based methods. As a result, we present a new simple, robust and fast classification pipeline that outperforms methods based on traditional approaches or pre-trained networks, with a weighted-average F1-score of 64.5%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2022.105450 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!