A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel approach for skin lesion symmetry classification with a deep learning model. | LitMetric

A novel approach for skin lesion symmetry classification with a deep learning model.

Comput Biol Med

SCOPIA Research Group, University of the Balearic Islands, Palma, 07122, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, 07010, Spain; Laboratory of Artificial Intelligence Applications (LAIA@UIB), Palma, 07122, Spain. Electronic address:

Published: June 2022

Skin cancer has become a public health problem due to its increasing incidence. However, the malignancy risk of the lesions can be reduced if diagnosed at an early stage. To do so, it is essential to identify particular characteristics such as the symmetry of lesions. In this work, we present a novel approach for skin lesion symmetry classification of dermoscopic images based on deep learning techniques. We use a CNN model, which classifies the symmetry of a skin lesion as either "fully asymmetric", "symmetric with respect to one axis", or "symmetric with respect to two axes". Moreover, we introduce a new dataset of labels for 615 skin lesions. During the experimentation framework, we also evaluate whether it is beneficial to rely on transfer learning from pre-trained CNNs or traditional learning-based methods. As a result, we present a new simple, robust and fast classification pipeline that outperforms methods based on traditional approaches or pre-trained networks, with a weighted-average F1-score of 64.5%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.105450DOI Listing

Publication Analysis

Top Keywords

skin lesion
12
novel approach
8
approach skin
8
lesion symmetry
8
symmetry classification
8
deep learning
8
"symmetric respect
8
skin
5
symmetry
4
classification deep
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!