EEG microstate dynamics indicate a U-shaped path to propofol-induced loss of consciousness.

Neuroimage

Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland; CIBM Center for Biomedical Imaging, Geneva, Lausanne, Switzerland.

Published: August 2022

Evidence suggests that the stream of consciousness is parsed into transient brain states manifesting themselves as discrete spatiotemporal patterns of global neuronal activity. Electroencephalographical (EEG) microstates are proposed as the neurophysiological correlates of these transiently stable brain states that last for fractions of seconds. To further understand the link between EEG microstate dynamics and consciousness, we continuously recorded high-density EEG in 23 surgical patients from their awake state to unconsciousness, induced by step-wise increasing concentrations of the intravenous anesthetic propofol. Besides the conventional parameters of microstate dynamics, we introduce a new implementation of a method to estimate the complexity of microstate sequences. The brain activity under the surgical anesthesia showed a decreased sequence complexity of the stereotypical microstates, which became sparser and longer-lasting. However, we observed an initial increase in microstates' temporal dynamics and complexity with increasing depth of sedation leading to a distinctive "U-shape" that may be linked to the paradoxical excitation induced by moderate levels of propofol. Our results support the idea that the brain is in a metastable state under normal conditions, balancing between order and chaos in order to flexibly switch from one state to another. The temporal dynamics of EEG microstates indicate changes of this critical balance between stability and transition that lead to altered states of consciousness.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2022.119156DOI Listing

Publication Analysis

Top Keywords

microstate dynamics
12
eeg microstate
8
brain states
8
eeg microstates
8
temporal dynamics
8
eeg
5
dynamics
5
dynamics indicate
4
indicate u-shaped
4
u-shaped path
4

Similar Publications

Attention-deficit hyperactivity disorder (ADHD) is a neurobiological condition that affects both children and adults. Microstate (MS) analyses, a data-driven approach that identifies stable patterns in EEG signals, offer valuable insights into the neurophysiological characteristics of ADHD. This review summarizes findings from 13 studies that applied MS analyses to resting-state and task-based brain activity in individuals with ADHD.

View Article and Find Full Text PDF

Background: Mild cognitive impairment (MCI) is recognized as a condition that may increase the risk of developing Alzheimer's disease (AD). Understanding the neural correlates of MCI is crucial for elucidating its pathophysiology and developing effective interventions. Electroencephalogram (EEG) microstates, reflecting brain activity changes, have shown promise in MCI research.

View Article and Find Full Text PDF

Multi-level cognitive state classification of learners using complex brain networks and interpretable machine learning.

Cogn Neurodyn

December 2025

National Engineering Research Center of Educational Big Data, Central China Normal University, Luoyu Road, Wuhan, 430079 Hubei China.

Identifying the cognitive state can help educators understand the evolving thought processes of learners, and it is important in promoting the development of higher-order thinking skills (HOTS). Cognitive neuroscience research identifies cognitive states by designing experimental tasks and recording electroencephalography (EEG) signals during task performance. However, most of the previous studies primarily concentrated on extracting features from individual channels in single-type tasks, ignoring the interconnection across channels.

View Article and Find Full Text PDF

Diminished attention network activity and heightened salience-default mode transitions in generalized anxiety disorder: Evidence from resting-state EEG microstate analysis.

J Affect Disord

December 2024

Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, People's Republic of China. Electronic address:

Generalized anxiety disorder (GAD) is a common anxiety disorder characterized by excessive, uncontrollable worry and physical symptoms such as difficulty concentrating and sleep disturbances. Although functional magnetic resonance imaging (fMRI) studies have reported aberrant network-level activity related to cognition and emotion in GAD, its low temporal resolution restricts its ability to capture the rapid neural activity in mental processes. EEG microstate analysis offers millisecond-resolution for tracking the dynamic changes in brain electrical activity, thereby illuminating the neurophysiological mechanisms underlying the cognitive and emotional dysfunctions in GAD.

View Article and Find Full Text PDF

Subthalamic γ Oscillation Underlying Rapid Eye Movement Sleep Abnormality in Parkinsonian Patients.

Mov Disord

December 2024

National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China.

Background: Abnormal rapid eye movement (REM) sleep, including REM sleep behavior disorder (RBD) and reduced REM sleep, is common in Parkinson's disease (PD), highlighting the importance of further study on REM sleep. However, the biomarkers of REM disturbances remain unknown, leading to the lack of REM-specific neuromodulation interventions.

Objective: This study aims to investigate the neurophysiological biomarkers of REM disturbance in parkinsonian patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!